
MASTER THESIS

Thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Engineering

at the University of Applied Sciences Technikum Wien
Master Game Engineering & Simulation

Real-Time Erosion Simulation &
Visualization with OpenCL
by
Michael Muck, BSc
3452 Atzenbrugg, Leopold Figl Straße 8

Supervisors:
Dipl.-Ing. Andreas Monitzer, Bakk. techn. MSc
Dipl.-Ing. Dr. Markus Schordan

Vienna, March 5, 2012

Declaration

I con�rm that this paper is entirely my own work. All sources and quotations have been fully
acknowledged in the appropriate places with adequate footnotes and citations. Quotations have
been properly acknowledged and marked with appropriate punctuation. The works consulted are
listed in the bibliography. This thesis has not been submitted to another examination panel in the
same or a similar form, and has not been published.

Place, Date Signature

Kurzfassung

Um die Erosion eines Terrains simulieren zu können gibt es die verschiedensten Methoden. Allen
gemeinsam ist die Komplexität, welche oftmals eine Echtzeitsimulation umöglich macht. Trotz der
immer schneller werdenden Hardware ist es daher von groÿer Wichtigkeit einen geeigneten Algorith-
mus zu �nden, der auch unter den verschiedensten Hardwarekon�gurationen e�zient funktioniert
und glaubwürdige Ergebnisse produziert.
Um dieses Ziel zu erreichen, werden in dieser Arbeit zunächst einige bekannte Algorithmen

zur Erosionssimulation analysiert und danach ein weiterer vorhandener Algorithmus, welcher auf
Geschwindigkeitsfeldern von Wasser, die durch ein optimiertes Shallow-Water Modell generiert
werden, untersucht. In weiterer Folge wird die Implementierung und Erweiterung dieses Algorith-
mus mit Hilfe des OpenCL Frameworks vorgestellt und auch näher auf die Umsetzung und die
dabei erreichten Ergebnisse eingegangen.
OpenCL (Open Computing Language) ist eine neue Programmierplattform (erste Spezi�kation

von 8.12.2008 - erste Implementierungen ab Aug. 2009) für CPUs, GPUs aber auch DSPs,
welche die Hardware abstrahiert um Berechnungen (�Kernels�) auf verschiedene Geräte im System
beliebig verteilen zu können. Im Gegensatz zu CUDA, welches nur auf nVidia Gra�kkarten
lau�ähig ist, ist OpenCL eine o�ene Plattform, welche im Moment von allen groÿen Herstellern
aktiv unterstützt wird.

Schlagwörter: Hydraulische Erosion, Verwitterung, Simulation, OpenCL, Implementierung,
Echtzeit, Shallow-Water, Pipe Model

Abstract

There are many methods for simulating erosion of a terrain. All of them have in common a
high complexity, which often makes it impossible to run the simulation in real-time. Despite the
increasing speed of the hardware it is very important to use a suitable algorithm, which also runs
e�ciently under the most common hardware con�gurations and produces credible results.
To achieve this goal, the known algorithms for erosion simulation are reviewed at �rst. Then

another existent algorithm, which relies on the velocity �eld of the running water which is generated
by an optimized Shallow-Water model, is examined. Furthermore an improved implementation of
this algorithm with the OpenCL Framework is presented and the realisation and its results are
discussed in detail.
OpenCL (Open Computing Language) is a new programming platform (�rst speci�cation

released on 8th december 2008 � �rst implementations where shown in august 2009) for CPUs,
GPUs as well as DSPs, which aims to abstract the actual hardware and distribute the calculations
(so called �Kernels�) to various devices in the system. In contrast to CUDA being for nVidia
devices only, OpenCL is also an open platform which is supported by all major hardware vendors.

Keywords: Hydraulic Erosion, Weathering, Simulation, OpenCL, Implementation, Real-Time,
Shallow-Water, Pipe Model

Acknowledgements

First of all i would like to thank Dipl-Ing. Andreas Monitzer, Bakk. techn. Msc. my �rst
supervisor for his many advices as a professional as well as Dipl.-Ing. Dr. Markus Schordan my
second supervisor.

Second i want to thank Bernadette Thalhammer for supporting me whenever i needed her help
and for tolerating the nights awake spent on this thesis.

Special thanks go to Patrick Thalhammer for his instant proofreading, Stefan Sperlhofer
for advices regarding the visualization and Emanuel Plochberger for the rich correspondence
regarding OpenCL.

At last i would also like to thank my parents, who supported me during my studies whenever
and wherever possible.

Contents

1 Introduction 1

2 Related Work 2
2.1 Overview . 2
2.2 Fast Hydraulic Erosion Simulation and Visualization on GPU 4
2.3 Interactive Terrain Modeling Using Hydraulic Erosion 4
2.4 Fast Hydraulic and Thermal Erosion on the GPU 5

3 Erosion Model 7
3.1 Pseudo Random Number Generator . 8
3.2 Terrain Surface Normal Generation . 8
3.3 Water Increment . 9
3.4 Water Simulation . 9

3.4.1 Out�ow Calculation . 9
3.4.2 Velocity Field Calculation . 12
3.4.3 Extension to Moore-Neighbourhood . 13

3.5 Hydraulic Erosion and Deposition . 13
3.5.1 Sediment Advection . 15

3.6 Thermal Weathering . 16
3.6.1 Material Displacement Calculation . 16
3.6.2 Terrain Height Update . 18

3.7 Water Evaporation . 18

4 A Brief Introduction to OpenCL 20
4.1 Motivation . 20
4.2 Overview . 21
4.3 OpenCL Memory Model . 22
4.4 OpenCL Execution Environment & Objects . 23

4.4.1 Overview . 23
4.4.2 Setup . 25
4.4.3 Memory . 25
4.4.4 Execution . 26

4.5 Execution Flow . 27
4.6 OpenCL C . 27

4.6.1 Limitations of OpenCL C . 29
4.7 Basic Example . 30

5 Implementation of a Test Framework 34
5.1 Host Application . 34

5.1.1 Tool Classes . 36

6

5.1.2 Usage . 39
5.2 Erosion Simulation . 43

5.2.1 Water Evaporation / Increase . 46
5.2.2 Rand Bu�er Update . 47
5.2.3 Terrain Normal Generation . 47
5.2.4 Water out�ow calculation . 48
5.2.5 Water height update / Velocity Field calculation / Sediment Capacity com-

putation . 50
5.2.6 Erosion - Deposition . 52
5.2.7 Sediment Advection . 53
5.2.8 Thermal Weathering Soil Out�ow Calculation 55
5.2.9 Thermal Weathering Height Update . 56

5.3 Visualization . 57

6 Results 58
6.1 Thermal Weathering . 58
6.2 Hydraulic Erosion Neighbourhood and Advection 58
6.3 Full Algorithm Results . 60

6.3.1 Comparison to Natural Phenomena . 61
6.4 Performance Measurements . 61

7 Conclusion 74

Bibliography 76

List of Figures 79

List of Tables 80

List of Abbreviations 81

1 Introduction

Although erosion simulation or terrain modelling in general is a well explored �eld in computer
science, it still presents a reasonable challenge to engage. While there have been proposed
many good algorithms in soil science, all of them have in common a high complexity, which
often makes it di�cult or even impossible to run a simulation in real-time. Since there
is an always emerging demand for realistic simulation in games too, the pressure is even
higher to �nd a good balance between realism and a soft real-time simulation. Despite the
increasing speed of hardware it is therefore very important to use a suitable algorithm which
also runs e�ciently under the most common hardware con�gurations and produces credible results.

To achieve this goal it is essential to know where to start, what is possible and where are the
boundaries of a given algorithm. This master thesis is designated to provide such information on
a detailed level by analysing, extending and implementing a gpu-accelerated erosion variant which
is based on an optimized Shallow-Water model and was proposed in a series of papers recently.
To ensure the compatibility with as many devices as possible and to exploit the parallel nature of
the problem, OpenCL was chosen as the implementation platform.

Initially the chapter Related Work (2) gives an overview of already researched approaches in
this sector. Furthermore the closely related recent works will be discussed in more detail.

In the next chapter Erosion Model (3) the model which is going to be implemented will be
described. The erosion model takes several approaches from �Related Work� and extends them
where necessary.

In the following chapter A Brief Introduction to OpenCL (4) the OpenCL Platform, its Memory
Model and Execution Environment as well as the OpenCL C language is introduced, culminating
in a short basic example on how to start an OpenCL application from scratch.

The chapter Implementation of a Test Framework(5) gives an overview of the host application
at �rst. Subsequently the focus is on the OpenCL implementation of the given erosion model as
introduced in chapter (3). Also pitfalls which are uncovered during the development process will
be discussed here as well.

In Results (6) the achieved e�ects of the erosion model variants are then compared to each
other as well as to natural erosion and weathering phenomena. Also performance measurements
and comments on the speci�c settings are presented in this chapter.

Chapter Conclusion (7) closes the master thesis with a �nal summary of the learnings that
have been gathered and gives an outlook what a future work on erosion simulation could improve
even further.

1

2 Related Work

2.1 Overview

Many erosion algorithms have been examined in the past. Starting from fractal rules (Harmon et
al. [1] and Valette et al. [2]) to produce eroded terrains like in Terrain Simulation Using a Model
of Stream Erosion (Kelly et al. [3]) where drainage networks generated by geological data together
with fractal terrain are used and in A Fractal Model of Mountains with Rivers (Prusinkiewicz et
al. [4]) where rivers where integrated through midpoint displacement into mountain models, to
more physically based models which modify the relief of premodeled/generated terrains. While
the earlier papers basically focus on the algorithms, the majority of the more recent ones also
target the domain of (soft) real time simulation.

Musgrave et al. [5] suggest to �rst create a terrain (fractal based) and then simulate a
simple di�usion-based hydraulic erosion process. A thermal weathering simulation which deposits
material based on the local surface gradient is also discussed.

Roudier et al. [6] extended the erosion process by applying local geological parameters like
�uvial erosion, gravity creep and chemical dissolution and di�erent materials.

In Computer Generation of Eroded Valley and Mountain Terrains [7] Nagashima also presented
a model in which valleys and canyons are generated by a synthesis of a generated fractal terrain
and a prede�ned river network. The river banks then get eroded by a combination of hydraulic
and thermal erosion.

Bene² et al. present in their paper Visual Simulation of Hydraulic Erosion [8] another
di�usion-based erosion simulation variant in which the visual appearance and not the physical
accuracy plays a major role. Bene² et al. divide the simulation process in several independent
steps (Water Update & Evaporation, Erosion & Deposition, Water & Sediment Transport) to
simplify the repeated execution of arbitrary steps. The deposition is based on the evaporation of
water, leaving behind the sediment.

All methods described previously use either a simple di�usion based water model or a derivative.
Since this solution is only practicable for slow moving �uids and not very accurate, Chiba et al.
[9] propose a di�erent solution in which a velocity �eld is calculated from the motion of water
particles. The name �velocity �eld� is rather used as an umbrella term for the di�erent simulation
data arrays (e.g. water quantity, velocity vector and collision energy arrays). In the next step the
erosion and transportation process calculates new output values from the updated data. The
algorithm works very well for the simulation of ridges and valleys and also takes the collision
between water and the ground surface into account. This particle-based approach was improved
further by Sutherland et al. in Particle-based enhancement of terrain data [10].

2

CHAPTER 2. RELATED WORK

Bene² et al. also improved their algorithm in Hydraulic Erosion [11] by using Navier-Stokes
equations for velocity and pressure simulations on a three-dimensional regular grid. Although
yielding impressive visual results, their solution was far away from a real-time simulation.

In Interactive Physically Based Fluid and Erosion Simulation [34] Neidhold et al. propose a
new approach with a strong focus on real-time simulation. To accomplish this, Neidhold uses a
layered terrain instead of a full three-dimensional representation. The water simulation is based
on Stam's Semi-Lagrangian Stable Fluids [12], but reduced to a two-dimensional version, which
is necessary to save computation time. After each water update step, a di�usion step is used to
avoid oscillation and smooth the velocity �eld. The erosion algorithm is mass conserving and
interactively customizeable. On the downside the algorithm is still of limited use for real time
applications - the paper reports 4 frames per seconds (FPS) on a 256x256 grid. Optimization
through parallelization was not an option due to the algorithm's dependent data processing.

In recent years more and more people are using graphics processing hardware to cover general
computing problems [13]. There are many examples especially in the �uid simulation domain
which make use of these concepts very successfully.

In Fast Fluid Dynamics Simulation on the GPU [14] Harris proposes a �uid simulation based
on the Stable Fluids method [12] which runs a 2D Navier Stokes Equation (NSE) solver en-
tirely on the GPU. At the same time Wu et al. also presented a similar approach in their paper [15].

In another paper from the same year Liu et al. [16] went a step ahead and simulated a fully three
dimensional NSE on the GPU. If the grid size is kept at a very low level (e.g. 64x17x16) interactive
frame rates ranging from 20 to 40 fps can be achieved with their solution. Unfortunately using
larger grid sizes is limited by the rapidly increasing memory consumption which has a signi�cant
negative impact on the frame rates or makes it even impossible to run.

Other methods of �uid simulation like the Lattice Boltzmann Method (LBM) were reviewed in
Implementing Lattice Boltzmann Computation on Graphics Hardware [17]. Although their GPU
solution shows a signi�cant speedup over a similar software solution it has basically the same
drawbacks as every other 3D solver: the memory requirement. More recent implementations
show signi�cant performance improvements due to enhanced graphics hardware, but the limit is
still the high memory requirement [18] (e.g. D3Q19@128x128x128 ⇒ 2.097.152 Cells with 96
Bytes per Cell, needed twice for �ip-�opping ⇒ 384MB - D3Q19@256x256x256 ⇒ 3072MB)

As discussed before, a fully three-dimensional approach is not a�ordable on a larger scale,
therefore other researchers focused on two-dimensional shallow water problems leading to the
Shallow Water Equations (SWE). These equations are derived from depth-integrating the
Navier-Stokes equations and are only applicable if the horizontal length scale is much greather
than the vertical length scale. Under this circumstances the vertical velocities are very small and
the horizontal velocities can be assumed to be constant throughout the depth at a given point [19].

Since Shallow Water Equations are two-dimensional they have some obvious limitations:
the water cannot splash and waves cannot break. However there are e�cient methods to
simulate SWE's and as long as the forces are su�ciently gentle, the assumption produces
plausible results. Kass and Miller [20] showed in 1990 an implicit numerical method which was

3

CHAPTER 2. RELATED WORK

implemented in software and ran at 32fps on a 32x32 grid at that time. Later on Bene² [21] em-
ployed the same method for a real-time erosion simulation and achieved 5-10 fps on a 300x300 grid.

Another SWE variant was introduced in 1995 by O'Brien et al. [22]. They proposed a virtual
pipe model which is composed of a volume of water which is divided into vertical columns in a
rectilinear grid. In this height�eld, each cell is connected to its neighbours by virtual pipes. The
�ow in the pipes is calculated from the physical laws for hydrostatic pressure. O'Brien et al. also
considered external forces on the surface which are applied as external pressure. Furthermore spray
particles are generated if the upward velocity exceeds a certain threshold.

2.2 Fast Hydraulic Erosion Simulation and Visualization on GPU

In their paper Fast Hydraulic Erosion Simulation and Visualization on GPU Mei et al. [23] propose
a new and very fast erosion simulation method suitable to run on graphics hardware.
Basically their approach uses an adapted virtual pipe model on a two dimensional height�eld

for the water simulation (see O'Brien et al. [22]). Unlike in Dynamic Simulation of Splashing
Fluids there is no explicit scaling back process for cells where the updated water height is negative,
because of the dependent data processing which is not a�ordable on GPUs. Instead it is assumed
that the out�ow of each cell is limited by its water amount. To enforce this condition, the water
out�ow is scaled down by a calculated factor if the amount would be exceeded.
The erosion process is based on the velocity �eld which is calculated from the water pressure

di�erences. With the velocity �eld and other terrain parameters a sediment transport capacity is
calculated from an empirically determined erosion formula and compared to the current suspended
sediment. Then the suspended sediment is transported along the velocity �eld by a simple semi-
Lagrangian advection method which was introduced in Stable Fluids [12]. Following Bene² et al.
[8] an evaporation step is also included in this model.

Figure 2.1: Erosion simulation on GPU with rainfall and a river source (source: [23], page 8)

4

CHAPTER 2. RELATED WORK

The implementation uses three 2D textures for the computation data. In multiple fragment
shader passes the new values are obtained and written into another texture stack for the next
pass. The simulation takes fully place on the graphics card - no data transfer between the host
and the graphics memory is involved. In total seven passes are used for the simulation part. After
that the data from the textures is directly used to displace the height of a prede�ned regular
grid mesh. A simple fragment shader computes the �nal color where the transparency varies with
the water height of the cells. Multiple test scenes are presented (see �gure 2.1 for an example)
and also the performance is measured. For a grid size of 256x256 a frame rate of approximately
400fps is achieved - dropping to 185fps for a 512x512 grid and 59fps for a 1024x1024 grid. The
performance was measured using an Pentium IV 2.4GHz equipped with an nVidia GeForce 8800
GTX graphics card.

2.3 Interactive Terrain Modeling Using Hydraulic Erosion

Later on Stava et al. [24] also took a similar approach in their paper Interactive Terrain Modeling
Using Hydraulic Erosion. In contrary to Mei et al. they also focus on the interactivity. This
was accomplished by combining two hydraulic erosion algorithms and simulating multiple material
layers. Also the slippage of material due to gravity was taken into account. To address the limited
GPU memory the terrain was divided into multiple tiles which can be processed independently.

Figure 2.2: Real-time simulation of erosion exposing a fossil skeleton (source: [24], page 2)

To describe a scene, a layered height �eld with di�erent material constants like dissolution
traits or resistance to the water movement is used. For the visual representation, a real-time
renderer is used, but an export of the height�eld into a third-party package for further modeling
and rendering is also possible. The erosion and deposition process only takes place between the
topmost material layers. Stava et al. also introduced an improved sediment transportation step
which uses the MacCormack advection scheme, a second order accuracy method (see [25]). An
example of this method can be seen in �gure 2.2.

2.4 Fast Hydraulic and Thermal Erosion on the GPU

Recently another paper which also uses the water pipe model was published [26]. In his work Jákó
proposes a new interpretation of �Fast Hydraulic Erosion Simulation and Visualization on GPU�
[23] in which he extends the original model by thermal erosion simulation and a true 3D collision
between water and terrain surface. He also attempts to �x some minor drawbacks of the original

5

CHAPTER 2. RELATED WORK

model e.g. the dissolved sediment is only subtracted from the terrain without adding the volume
to the water height.
The thermal �erosion� model is mainly a GPU adapted form of Thermal Weathering as

proposed by Musgrave et al. [5] but instead of moving the calculated sediment volume directly
to the lowest neighbours, the quantities are distributed over another set of virtual pipes. In an
additional simulation step the terrain height is then updated for each cell by subtracting the cell's
outgoing material �ow from the incoming material �ow of the neighbour cells. Figure 2.3 shows
an example from the paper.

Figure 2.3: Fast Hydraulic and Thermal Erosion (source: [26], page 6)

6

3 Erosion Model

At the bottom the virtual pipe model as used in Fast Hydraulic Erosion Simulation and Visualization
on GPU [23] de�nes the data layout for the water and erosion simulation. As described in section
2.2 this algorithm works on a regular grid where each cell is composed of various properties.
The basic layout is extended by additional data �elds for e.g. the random rain distribution or the
thermal weathering simulation which where not part of the original approach.

• Terrain Height b

• Water Height d

• Suspended Sediment Amount s

• Water Volume Out�ow Q, consisting of (QL, QR, QT , QB), respectively
(QL, QR, QT , QB, QLT , QRT , QRB, QRT)

• Water Surface Velocity Vector ~v =

(
u
v

)
• Soil Volume Out�ow S, consisting of (SL, SR, ST , SB, SLT , SRT , SRB, SRT)

• Local Hardness Coe�cient h

• Regolith Wetness sq

• Cell Normal n

• Pseudo Random Value rand

Figure 3.1: Basic data structure and neighbouring information (source: [23], page 3)

The simulation itself is divided into several distinct steps which will be described in detail in the
following sections:

7

CHAPTER 3. EROSION MODEL

1. Rand Bu�er Update

2. Terrain Normal Generation

3. Water Increase due to rainfall or river sources

4. Water Simulation:

Out�ow Simulation and Water Height Update

Velocity Field Calculation

5. Force based Erosion:

Erosion-Deposition Process Simulation

Suspended Sediment Advection, caused by the Velocity Field

6. Thermal Erosion:

Material Out�ow Calculation

Terrain Height Update

7. Water Evaporation

The input data of many steps is dependant on data from previous steps. To emphasize this,
number subscripts are used for intermediate values (d1, d2, etc. ...) whereas the value at the
beginning of an iteration is denoted as e.g. dt (water height at time t). The timestep for a full
simulation iteration is termed 4t. The fully updated value is then called e.g. dt+4t.
Letters L,R, T,B, LT,RT,RB,LB are used to indicate directions from the current cell to
the according Left, Right, Top, Bottom, Left-Top, Right-Top, Right-Bottom and Left-Bottom cell.

The above enumeration does not imply that the actual implementation has the same pro-
cessing order. It is merely a logical grouping of the simulation processes.

3.1 Pseudo Random Number Generator

For the random number generation a simple Linear Congruential Generator (LCG) is used. Its
implementation is comparatively lightweight, fast and adequate for the problem. Each cell holds a
random value which is initialized at program startup by another o�ine RNG. At every simulation
step the current rand value is read and updated by the standard LCG formula:

Rt+1(x, y) = (Rt(x, y) ∗ a+ b) mod m (3.1)

3.2 Terrain Surface Normal Generation

For the erosion capacity calculation and for the lighting terrain normals are necessary. Since the
terrain is dynamically changing, it makes sense to o�oad the generation of the terrain normals to

8

CHAPTER 3. EROSION MODEL

the GPU as well. Again the simplest a�ordable approach is used to minimize gpu ressource usage.

~x1 = P (x+ 1, y)− P (x− 1, y)

~y1 = P (x, y + 1)− P (x, y − 1)

~x2 = P (x− 1, y − 1)− P (x+ 1, y + 1)

~y2 = P (x+ 1, y − 1)− P (x− 1, y + 1)

~n1 = ~x1× ~y1

~n2 = ~x2× ~y2

~n = −normalize(n0 + n1) (3.2)

3.3 Water Increment

Water has two sources: springs and rainfall. Springs are static water sources with distinct radii,
positions and water amounts. Rainfall can be either random or �constant� whereupon the random
rainfall is based on a certain threshold and Rt(x, y) of the current cell. For �constant� rainfall the
rain intensity is simply added to every cell. The intensity is variable and can be regulated from
within the program.

rand_raint(x, y) =

{
0 , Rt(x, y) ≤ threshold
rain_intensity ,Rt(x, y) > threshold

raint(x, y) = rand_raint(x, y) + constant_rain(x, y)

d1(x, y) = dt(x, y) +4t · (spring(x, y) + raint(x, y)) (3.3)

3.4 Water Simulation

The pipe model from O'Brien et al. [22] works by exchanging water with the neighbouring cells
through virtual pipes. Every cell maintains an input/output volume �ow from/to its neighbour
cells. The new height is then calculated from the sum of all incoming and outgoing volume
�ows of that cell. If the resulting water height is negative, the pipes which are removing �uid
of the cell must be scaled back until all cells have a positive volume again. For real-time GPU
solutions this approach is not suitable, since it involves dependant data processing over multiple
steps. Nevertheless the algorithm from O'Brien et al. [22] provides the foundation of the improved
GPU-suited model of �Fast Hydraulic Erosion Simulation and Visualization on GPU�.

3.4.1 Outflow Calculation

The equations for water �ow rate calculation rely on the physical law for hydrostatic pressure
which is de�ned as

p = d · ρ · g + p0 (3.4)

9

CHAPTER 3. EROSION MODEL

Figure 3.2: Pipe model notations in Mei et al. (source: [23], page 4)

where d stands for the water height, ρ is the �uids density, g is the gravitation acceleration and
p0 is the atmospheric pressure in the system.
From the view of a regular grid we can rewrite this equation to

p(x, y) = d(x, y) · ρ · g + p0 (3.5)

where each cell has its distinctive water height d(x, y) and therefore di�erent pressures. The water
height of a cell can be determined from its volume V (x, y) and the given cell size lcell

d(x, y) =
V (x, y)

lcell · lcell
(3.6)

To calculate the water volume �ow rate Q of a cell to its neighbour we need to consider the
basic formula of the �ow rate

Q = ∆t ·Asurface · a (3.7)

Following the de�nition of the �ow rate, we need to compute the acceleration a of the current
water mass in the pipe traveling from a cell to its respective neighbour. In our case the cross
sectional area Asurface = Apipe is directly related to the cell geometry and can be described as

Apipe = d(x, y) · lcell (3.8)

To get the acceleration of the displaced mass we have to consider Newton's Second Law

F = m · a (3.9)

and the formula for pressure

p =
F⊥
A
⇒ F⊥ = p ·A (3.10)

where F⊥ is the acting e�ective force on the area Apipe.

Looking at the two formulas from a pipes view we can write

Fpipe = mwater · awater = ppipe ·Apipe (3.11)

10

CHAPTER 3. EROSION MODEL

where ppipe is the pressure di�erence ∆p between the current cell and its respective neighbour.
Combining this knowledge gives us the acceleration in a pipe as

a =
(p− pneighbour) ·Apipe

mwater
(3.12)

Again Apipe stands for the virtual pipe's cross-sectional area on which the water's driving force
stands perpendicular. The term p− pneighbour expresses the e�ective statical pressure in the pipe
and mwater is the current mass of the water in the pipe

Derived from the basic formula of density we can express the mass by its volume V and
the water density ρ.

ρ =
m

V
⇒ m = ρ · V (3.13)

The water volume in the pipe can be calculated as

V = Apipe · lpipe (3.14)

where Apipe itself is de�ned by the current water height d1(x, y) and cell side length lcell which
yields the formula for mwater

mwater = ρwater ·Apipe · lpipe (3.15)

Apipe = d1(x, y) · lcell (3.16)

⇒ mwater = ρwater · d1(x, y) · lcell · lpipe (3.17)

Together with the original formula of static �uid pressure (see equation 3.4) equation 3.12 can be
rewritten to

ai =
ρwater · g · (d1(x, y)− di1) · d1(x, y) · lcell

ρwater · d1(x, y) · lcell · lpipe
(3.18)

ai =
g · (d1(x, y)− di1))

lpipe
(3.19)

i=L,R,T,B

Assuming the acceleration being constant over the time period 4t, the �ow rate {Qi(x, y), i =
L,R, T,B, ...} for the pipe can be expressed as

Qi
t+4t(x, y) = Qi

t(x, y) +4t ·Apipe · ai(x, y) (3.20)

(3.21)

leading to a volume change of

4V (x, y) = 4t
∑

i=L,R,T,B

(
Qi

t+4t(x, y) +Qi
t

2

)
(3.22)

Notice that all of the equations are only approximations which rely on the assumption, that
the �uid is shallow and not moving rapidly. As mentioned before all of the cells need to be tested

11

CHAPTER 3. EROSION MODEL

for negative updated volumes. If a cell has a negative volume all pipes which are removing �uid
from this cell must be scaled back.

Mei et al. [23] solved this problem by updating the new water height step by step. At
�rst the out�ow volume of every cell is calculated just like before. For example the updated
out�ow to the left neighbour cell QL (QR, QT , QB, etc. ... are de�ned similar)

QL
1 (x, y) = max(0, QL

t (x, y) +4t ·Apipe ·
g · 4hL(x, y)

lpipe
) (3.23)

where QL
t (x, y) is the current out�ow value to the left neighbour, Apipe is the cross-sectional

area of the pipe, g is the acceleration due to gravity and 4hL(x, y) is the total height di�erence
(terrain b + water d) between the left neighbour and the current cell which is de�ned by the
formula:

4hL(x, y) = bt(x, y) + d1(x, y)− bt(x− 1, y)− d1(x− 1, y) (3.24)

Equation 3.21 and 3.23 are essentially the same. The di�erence lies in the out�ow which is limited
to positive values. If the out�ow exceeds the water volume it is scaled down

K = min(1,
d1(x, y) · lcell · lcell

(QL
1 +QR

1 +QT
1 +QB

1) · 4t
) (3.25)

leading to a �ow rate of

QL
t+4t(x, y) = K ·QL

1 (x, y) (3.26)

At the borders a �no slip� boundary condition is speci�ed so that no water can �ow out of the
grid. This is accomplished by setting the respective cell out�ows to zero: e.g. a cell at the left
border has an out�ow rate of QL(0, y) = 0 whereas a cell at the top border has an out�ow of
QT (x, 0) = 0. Other con�gurations are possible as well, simulating sinks or sources.

Another di�erence which is a result of limiting the out�ow to positive values, is the calcu-
lation of the net volume change. Instead of taking the average volume �ow of the last timestep
4t the change is calculated by subtracting the sum of out�ow of the current cell from the sum
of the neighbour out�ows to the current cell (=in�ow)

4V (x, y) = 4t ·
(∑

Qin −
∑

Qout

)
(3.27)

The next intermediate water height d2 is then updated as

d2(x, y) = d1(x, y) +
4V (x, y)

lcell · lcell
(3.28)

3.4.2 Velocity Field Calculation

O'Brien et al. then calculate a vertical velocity as well as a horizontal velocity for each cell. The
vertical velocity is used for a spray model where particles are created when the velocity exceeds a
certain threshold. Mei et al [23] basically use the same properties for their horizontal velocity �eld,

12

CHAPTER 3. EROSION MODEL

whereas the spray model is omitted. To calculate the horizontal velocity v =

(
vx
vy

)
the average

�ow rate of a cell in x-/y-direction during a timestep 4t is computed as

4Qx(x, y) =
QR(x− 1, y)−QL(x, y) +QR(x, y)−QL(x+ 1, y)

2
(3.29)

O'Brien et al. directly use 4Qx respectively 4Qy as a measurement for the surface velocity even
though its a volume rate. Mei et al. take this into account by dividing the �ow rate by the cell's
cross-sectional area lcell ·davg during the timestep 4t. Water height davg is de�ned as the average
water height between the �rst two water height update steps.

davg(x, y) =
d1(x, y) + d2(x, y)

2
(3.30)

vx(t+4t) =
4Qx(x, y)

lcell · davg(x, y)
(3.31)

The other component of the �ow velocity vy(t+4t) is calculated in a similar way.

3.4.3 Extension to Moore-Neighbourhood

Mei et al. use only four neighbours for the water simulation, but it can be easily extended to
handle all eight cell neighbours. Care must be taken because of the di�erent pipe lengths in the
diagonals e.g. for equation 3.23

QLT
1 (x, y) = max(0, QLT

t (x, y) +4t ·Apipe ·
g · 4hL(x, y)√

2 · lpipe
) (3.32)

The scaling factor also changes to

K = min(1,
d1(x, y) · lcell · lcell

(QL
1 +QR

1 +QT
1 +QB

1 +QLT
1 +QRT

1 +QRB
1 +QLB

1) · 4t
) (3.33)

3.5 Hydraulic Erosion and Deposition

The basic erosion process is a force-based hydraulic erosion algorithm. It is dependant on the
velocities which are generated by the running water and its e�ects on the terrain. Many prediction
models have been proposed for this type of erosion in soil science. Mei et al. [23] chose a simpli�ed
empirical approach from [27] which is mostly determined by the sediment transport capacity C.
C is calculated as

C(x, y) = Kc · sin(max(αmin, α(x, y))) · |~v(x, y)| (3.34)

where Kc is a scaling constant, α(x, y) is the local tilt angle and ~v(x, y) is the local surface
velocity. The local tilt angle can be calculated from the dot product of the cells surface normal
and the up vector. C is strongly related to the terrain geometry and the surface velocity which is
a problem for very �at terrains where the tilt angle approaches zero. As a result C is very small
and little soil, or no soil will be picked up from the ground at all. To overcome this problem α
can be limited to a minimum threshold αmin.

13

CHAPTER 3. EROSION MODEL

In a paper recently published by Jákó [26] some improvements where added to the Erosion/De-
position step. At this point of the algorithm, the calculation of the sediment capacity is extended
by the ramp function lmax to associate the sediment capacity (and therefore the erosion depth)
with the water height.

lmax(val) =

0 , val ≤ 0

1− Kdmax−val
Kdmax

, 0 < val < Kdmax

1 , val ≥ Kdmax

(3.35)

which leads to

C(x, y) = Kc · sin(max(αmin, α(x, y))) · |~v(x, y)| · lmax (d1(x, y)) (3.36)

The purpose of the function is to scale down the sediment capacity if the water height is in the
range of 0−Kdmax. If the water height is above Kdmax the ramp function has no e�ect.

After the calculation of the current transport capacity the updated value is compared to the
suspended sediment amount st. If the capacity is greater than the suspended sediment amount
(C > st) the water can collect some more soil from the ground:

dissolvedSoil = Ks · h(x, y) · (C − st) (3.37a)

b1 = bt − dissolvedSoil (3.37b)

d3 = d2 + dissolvedSoil (3.37c)

s1 = st + dissolvedSoil (3.37d)

otherwise (C ≤ st) some suspended sediment is deposited on the ground:

depositedSoil = clamp(Kd · (st − C), 0.0, d2) (3.38a)

b1 = bt + depositedSoil (3.38b)

d3 = d2 − depositedSoil (3.38c)

s1 = st − depositedSoil (3.38d)

Ks and Kd are global erosion scale parameters which control the dissolving respectively the
deposition speed.

Jákó also suggests a �x to the water simulation by adding the dissolved soil which is taken from
the ground to the water height (equations 3.37c and 3.38c). This ensures that the cells overall
height in the current timestep does not vary and improves longterm stability. Not adding the
dissolved soil causes unwanted feedback to the water �ow simulation in the original simulation
[26]. If soil gets deposited it is subtracted from the water height again. To ensure a posi-
tive water height after this step, depositedSoil needs to be limited by the current water heigth d2

Another improvement is the local hardness coe�cient h which varies between 0.0 and 1.0 and
scales down the dissolved sediment amount. The cell's hardness coe�cient is lowered when some
soil is deposited at the cell position, causing the erosion to take less soil the next time the cell
contributes ground to the erosion process.

ht+4t(x, y) = max (Rmin, ht(x, y)−4t ·Kh ·Ks · (st − C)) (3.39)

14

CHAPTER 3. EROSION MODEL

3.5.1 Sediment Advection

After the suspended sediment update step, it is transported to a new location by the velocity �eld.
This can be described by the advection equation:

∂s

∂t
+ (~v · ∇s) = 0 (3.40)

A simple forward Euler step would lead to problems regarding the numerical stability as well
as the numerical error [23]. Therefore Mei et al. use the semi-Lagrangian approach which was
introduced by Stam [12] to solve the advection equation. Unlike Stam who uses a particle tracer
to �nd the velocity of a point a timestep 4t ago, Mei et al. use the velocity to go back in time
and forward the sediment found at this position.

Therefore the new suspended sediment of a cell can be obtained by taking an Euler-step back-
ward in time which has been proven to be unconditionally stable [12] [23]:(

xn
yn

)
=

(
x
y

)
−4t ·

(
vx(x, y)
vy(x, y)

)
(3.41)

st+4t(x, y) = s1(xn, yn) (3.42)

Since in most cases the resulting position

(
xn
yn

)
does not directly correspond to an integral grid

position, the actual value of st+4t is computed using a bilinear interpolation of the four nearest
neighbours.

Modified MacCormack scheme

Stava et al. [24] suggest an improvement for the transportation step, using a second order
accuracy back and forth error compensation and correction (BFECC) advection method to
minimize the numerical di�usion of sediment transport. They solve the advection equation using
a modi�ed MacCormack advection scheme.

The original BFECC scheme can be described as

φ̂n+1 = A(φn) (3.43a)

φ̂n = AR(φ̂n+1) (3.43b)

e =
φ̂n − φn

2
(3.43c)

φ̄n = φn − e (3.43d)

⇒ φn+1 = A(φ̄n) (3.43e)

At �rst the forward advection operator A is applied to the initial value to compute an intermediate
result φ̂n+1. Then the backward advection operator AR is used on the intermediate result to
calculate φ̂n. The di�erence of these two values is approximately twice the advection error e.
With the knowlege of the advection error, the initial value can be adjusted and advected again
with A thus yielding the end result.

15

CHAPTER 3. EROSION MODEL

Following Selle et. al [25] the scheme can also be written in its equivalent but computationally
cheaper variant (modi�ed MacCormack scheme)

φ̂n+1 = A(φn) (3.44a)

φ̂n = AR(φ̂n+1) (3.44b)

φn+1 = φ̂n+1 +
φn − φ̂n

2
(3.44c)

where each advection operator is a �rst order accurate semi-Lagrangian unconditionally stable
building block.
The big advantage of the MacCormack scheme is that only twice the e�ort of a �rst order

accurate scheme is necessary in contrary to other second order methods which makes it a�ordable
to use. The method can be further improved by automatically limiting the values to a simple �rst
order scheme if the method pulls data from where it should not.

3.6 Thermal Weathering

The thermal weathering simulation works similar to the water simulation. First each cell calculates
a soil out�ow which is then distributed through virtual pipes in a following step. In general the
term �thermal weathering� is used in this context to sum up the e�ects of any process that causes
material to displace and pile up at another position [26]. Overall it clearly has a smoothing e�ect
on the terrain.

Figure 3.3: Talus Angle in Nature, photograph by Michelle Lamberson 1

3.6.1 Material Displacement Calculation

The calculation of the material displacement is based on the work of Musgrave et al. [5] and was
recently adopted to GPU hardware by Jákó [26]. The key observation is that each solid granular

1http://www.flickr.com/people/vitrain/

16

http://www.flickr.com/people/vitrain/

CHAPTER 3. EROSION MODEL

material like sand or earth has a certain maximum angle for its slope (see �gure 3.3). If there is
material above this maximum angle it starts moving to lower levels. Once the material reaches
the critical angle it stops moving.

This so called talus angle α can be measured by dumping the material slowly to a �at surface
between two transparent plates (see �gure 3.4). From the emerging slope the angle can be easily
determined [26].

Figure 3.4: Talus angle measurement (source [26])

Following the implementation of Jákó, each cell has to compute the surface tilt angle to its
eight neighbours. This is accomplished by looking at the height di�erences between the current
cell and its neighbours. The maximum moved volume per timesteps is de�ned as

4V = Acell ·
H

2
(3.45)

where Acell is the cell's surface area lcell · lcell and height H is de�ned as

H = max
{
b− bi, i = L,R, T,B, LT,RT,RB,LB

}
(3.46)

otherwise the algorithm would oscillate [26].

Jákó extended the algorithm to also use the local hardness coe�cient h(x, y) and introduced a
scaling factor Kt to control the thermal weathering speed. The full formula for the volume 4V
which is going to be moved during a timestep 4t is then given as

4V = Acell · 4t ·Kt · h(x, y) · H
2

(3.47)

The slope angle between two neighbouring cells is computed as

αi = tan

(
b− bi

lcell

)
, i = L, R, T, B (3.48)

αi = tan

(
b− bi√
(2) · lcell

)
, i = LT, RT, RB, LB (3.49)

Where b− bi denotes the height di�erence between the neighbouring cells and lcell is used as the
distance between cells. For diagonal neighbours this distance should be corrected accordingly.

17

CHAPTER 3. EROSION MODEL

Material Angel of Repose

�ne grained sand 35◦

�ne grained sand (wet) 45◦

�ne grained sand (water �lled) 15-30◦

coarse grained sand 40◦

coarse debris 45◦

Table 3.1: Typical values for Talus Angles (source [28])

The algorithm then uses α to determine the set A of neighbours which receive a part of the
volume 4V

A =
{
bi, b− bi < 0 ∧ tan(α) > (h(x, y) ·Ka +Ki), i = L, R, T, B, LT, RT, RB, LB

}
(3.50)

where Ka is a global constant to regulate the in�uence of the local hardness coe�cient h(x, y).
Ki is the material slope angle (see table 3.1 for typical values). If the local hardness is close to one
the e�ective material slope angle gets bigger, thus allowing the material to withstand bigger angles.

The calculated amount 4V is then divided proportionally amongst the cells of set A according
to the cell height, respectively the height di�erence of the particular cell

4V k = 4V · bk∑
∀bk∈A b

k
(3.51)

As last step the value for each V k is written to the soil out�ow pipes of the current cell. The
pipes to cells which are not in set A are reset to zero.

3.6.2 Terrain Height Update

The second step of the thermal weathering simulation simply subtracts the out�owing material
from the incoming material and updates the height of the current cell accordingly.

bt+4t(x, y) = b1(x, y) +
(∑

4Vin −
∑
4Vout

)
(3.52)

3.7 Water Evaporation

Mei et al. use a simple formula to describe the evaporation

dt+4t(x, y) = d3(x, y) · (1−Ke · 4t) (3.53)

where Ke is a global evaporation constant. Figure 3.5 shows di�erent evaporation constants and
their in�uence on the water level over time.

Evaporation usually depends on various parameters like the �ow rate of air, atmospheric pressure,
surface area, �uid density, etc... For example the dalton equation (as formulated by Penman [29]):

E0 = (es − ed) · f(u) (3.54)

18

CHAPTER 3. EROSION MODEL

0

1

2

3

4

5

6

7

8

9

10

1 51 101 151 201 251 301 351 401 451 501

W
a

te
r

H
e

ig
h

t

Timesteps

Ke = 0.01

Ke = 0.02

Ke = 0.5

Ke = 0.1

Ke = 0.2

Ke = 0.5

Figure 3.5: Comparison of di�erent evaporation constants Ke, 4t = 0.1, Start Value = 10.0

takes into consideration the vapour pressure at the evaporation surface es as well as the vapour
pressure in the athmosphere above the surface ed. f(u) is a function of the horizontal wind
velocity which is empirically determined for a particular location. It is also directly related to the
shape and the surface geometry of the evaporating �uid.

Since most of the parameters are assumed to be constant during the simulation, the exponential
decrease of the water level can be seen as a coarse approximation of the surface area's in�uence in
evaporation. Although the assumption that a large water height is directly related to a big water
surface does not always apply (e.g. deep riverchannels) and the formula has no direct physical
background, it is su�cient and fast to implement for this kind of erosion simulation.

19

4 A Brief Introduction to OpenCL

OpenCL (Open Computing Language) is an emerging frame-

Figure 4.1: OpenCL Logo -
Trademark of Apple
Inc.

work for highly parallel computing applications. It allows the
utilization of heterogenous devices (CPUs, GPUs, DSPs) for
various computing tasks in an easy to use environment.
Initially developed by Apple the �rst proposal was �nalized

in cooperation with technical teams from AMD, IBM, Intel and
nVidia and submitted to the Khronos Group for standardization
in mid 2008. The Khronos Group released the speci�cation for
OpenCL 1.0 on Dezember 8th, 2008. The �rst speci�cation
update OpenCL 1.1 was released in June 2010. The update
adds a lot of important features e.g. new datatypes, bu�er
improvements when working with multiple devices, an en-
hanced event system, additional built-in functions as well as an
improved OpenGL interoperability. OpenCL 1.2 was released
the following year on November 16th 2011 and introduced several new features as well as other
improvements. The interoperability with DirectX and OpenGL was extended again. Further a
feature called �device partitioning� was introduced, allowing applications to partition a device
into sub-devices. The compiling and linking of objects was also revised to allow the creation
of OpenCL libraries. The ability to include built-in kernels which represent the capabilities of
specialized device components gives interesting new opportunities. OpenCL 1.2 also introduced
the possibility to create arrays of images 1

The �rst full implementation of OpenCL 1.0 was released by Apple with their MacOS X Update
�Snow Leopard� on August 28th, 2009. Other implementations from other companies followed in
that year. Since the beginning of 2012 most of the major companies (nVidia, AMD, Intel, IBM,
...) provide and support an OpenCL 1.1 implementation. Previews of upcoming OpenCL 1.2
implementations are available as well. 2 3 4

While the re�nement and further development is done by the Khronos Compute Working
Group, the trademark rights are held by Apple.

4.1 Motivation

One of the main ideas behind OpenCL is best described by the term �data parallel execution�. For
example consider an image which needs to be processed. In a simple single threaded program we
need to write a loop which executes our image processing function on each pixel or group of pixels

1http://www.khronos.org/opencl/
2http://software.intel.com/en-us/articles/vcsource-tools-opencl-sdk/
3http://developer.amd.com/sdks/AMDAPPSDK/Pages/default.aspx
4http://developer.nvidia.com/opencl

20

http://www.khronos.org/opencl/
http://software.intel.com/en-us/articles/vcsource-tools-opencl-sdk/
http://developer.amd.com/sdks/AMDAPPSDK/Pages/default.aspx
http://developer.nvidia.com/opencl

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

one after another. A recent midclass Intel Quad Core CPU5 provides 4 hardware threads while
a current AMD GPU6 actually has a total of 224 stream processors available for computation.
Wouldn't it be nice to utilize the full power of the GPU?

In the recent past, various solutions have already been invented to overcome this problem but
they rather introduced other barriers e.g. nVidia's CUDA as well as older AMD Stream SDKs are
only available for the manufacturers own devices. Others like the nVidia Cg Language are built
on top of programmable shaders and are more di�cult to handle and strictly limited to GPU
devices. OpenMP is available for x86 CPU's but lacks the support of other devices (e.g. GPUs,
DSPs, ...).

OpenCL tries to step in at this point and introduces a cross platform/cross device framework
which allows developers to write high performant portable code and run it on all OpenCL capabable
devices.

4.2 Overview

To achieve these goals OpenCL's platform model incorporates a Client-Server model. In OpenCL
terminology the Host (Client) runs the Host Code and uses Kernels which are executed in parallel
on the OpenCL Devices (Servers). To communicate with the devices a vendor speci�c OpenCL
Platform runtime which provides the standardized OpenCL API as well as libraries is needed (e.g.
AMD APP SDK, Intel OpenCL SDK, nVidia GPU Computing SDK, ...) [30] [31].

The Host Code can be written in any programming language and is managed by the operating
system. Its main purpose is to interface with, manage and submit work to the computing devices.
A Device can be any CPU, GPU or other accelerator hardware which is supported by the used

OpenCL runtime, called OpenCL Platform.

Each Computing Device consists of compute units which themselves consist of processing ele-
ments (see �gure 4.2). For example: the Intel Core i5 Quad Core CPU is a computing device with
four compute units and can execute four calculations in parallel on its multiple Integer, Floating
Point and/or SIMD processing elements whereas the former mentioned AMD GPU has a total of
14 available compute units where each unit consists of 16 processing elements [30] [32].

Work Groups & Work Items

OpenCL supports 1- to 3-dimensional problem domains (called NDRange). Each element in this
n-dimensional domain is called a Work Item. Work Items are grouped into Work Groups which
have their own local dimensions. Each Work Group shares local memory and synchronization
mechanisms and is guaranteed to be executed on one Compute Unit (see �gure 4.3).

When looking for example at the hardware implementation of OpenCL on the Radeon 6870
GPU architecture [32] each Work Item runs on a Processing Element which is part of a bigger
organizational structure - the Compute Unit. To hide latencies, up to 4 Work Items are pipelined

5Intel Core i5 750
6AMD Radeon HD 6870

21

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

Figure 4.2: OpenCL Platform Architecture

on the same Processing Element. As mentioned before every Compute Unit has 16 Processing
Elements. The optimum Work Item count per Compute Unit is therefore given as 16 x 4 = 64
Work Items which is called a �Wavefront� (or �Warp� in nVidia Terminology). This leads to the
conclusion that an optimal Work Group Size for this architecture is always a multiple of 64 x N
[32]. Although a single Processing Element of the Radeon HD6870 is able to compute up to 5
instructions per clock in theory, it is not always possible for the compiler to generate an instruction
stream which fully utilizes the processing elements of the VLIW5 architecture [32].

4.3 OpenCL Memory Model

On the Host-side the memory is managed by the Operating System as usual. The OpenCL
Context on the other side has di�erent memory regions and needs to be handled with care (see
�gure 4.4).

First of all there is global memory space which can be accessed by all devices and all workgroups
within the same context. The global memory access is not synchronized in any way and must be
handled by the developer. Alongside the global memory space is the memory for constants which
is also kernel wide accessible. Global memory is not only the biggest available memory storage

22

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

that OpenCL requires that the index space sizes are evenly divisible by the work-

group sizes in each dimension. For hardware efficiency, the workgroup size is usu-

ally fixed to a favorable size, and we round up the index space size in each dimension

to satisfy this divisibility requirement. In the kernel code, we can specify that

extra work-items in each dimension simply return immediately without outputting

any data.

For programs such as vector addition in which work-items behave independently

(evenwithin a workgroup), OpenCL allows the local workgroup size to be ignored by

the programmer and generated automatically by the implementation; in this case, the

developer will pass NULL instead.

PLATFORM AND DEVICES

The OpenCL platform model defines the roles of the host and devices and provides

an abstract hardware model for devices.

Host–Device Interaction

In the platform model, there is a single host that coordinates execution on one or

more devices. Platforms can be thought of as vendor-specific implementations of

the OpenCL API. The devices that a platform can target are thus limited to those with

which a vendor knows how to interact. For example, if Company A’s platform is

chosen, it cannot communicate with Company B’s GPU.

The platform model also presents an abstract device architecture that program-

mers target when writing OpenCL C code. Vendors map this abstract architecture

to the physical hardware. With scalability in mind, the platform model defines a

WG

<0,1>

WG

<0,L>

...

WG

<i,j>

WG

<K,0>

WG

<K,L>

.

.

.

WI

<0,0>

WI

<0,1>

WI

<0,N>

WI

<1,0>
...

WI

<M,0>

WI

<M,N>

.

.

.

NDRange

WG

<0,0>

WG

<1,0>

work-item

Workgroup (i, j)

FIGURE 2.1

Work-items are created as an NDRange and grouped in workgroups.

19Platform and devices

Figure 4.3: OpenCL Work Groups & Work Items (source: [31], page 19)

but also slower compared to the later described other memory variants [31].

Following the design of current GPU hardware the next memory in the hierarchy is a Work
Group's local memory which is shared across all Work Items in the group. Technically every
Work Group gets assigend to a Compute Unit where each Processing Element executes a
Work Item at runtime. Therefore the Work Group's local memory corresponds to a Compute
Units local memory. In case of the Radeon 6870 this maps to 32kB of Scratchpad memory [31][32].

Finally the private memory is memory that is only accessible by an individual Work Item. Local
kernel variables as well as nonpointer kernel arguments are private by default. Usually the private
memory is mapped to local registers which is the fastest possible on-chip memory available. If
there's not enough space in the registers the memory must be mapped to global memory, which
has a much higher access latency and should therefore be avoided [31][32].

Memory transfers from the host to the context/device memory and vice-versa must be explicitely
triggered by the developer.

4.4 OpenCL Execution Environment & Objects

There exist several Objects in OpenCL to simplify the Setup process as well as the handling of
di�erent kernels on di�erent devices and the interoperability with the Host application.

4.4.1 Overview

Setup

• Platform - Vendor-speci�c Runtime Support

• Context - Device & Bu�er Management

• Devices - GPU, CPU, DSP, ...

23

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

Figure 4.4: OpenCL Memory Model

Memory

• Bu�ers - Blocks of memory, Arrays

• Images - 2D or 3D images/textures

Execution

• Command Queues - Used to submit work or set/get bu�ers to or from the device

• Kernels - Execution Primitives

• Programs - Collections of Kernels

• Events - for Synchronization/Pro�ling

24

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

4.4.2 Setup

Platform

The starting point for the initialization of an OpenCL Application is clearly the OpenCL Platform
Object. Since multiple platforms can coexist in the same operating system environment, it is
mandatory to choose a speci�c platform at startup. The platform provides the vendor-speci�c
facilities in which the context and all other following OpenCL Objects are constructed and the CL-
Kernel source code is compiled. As mentioned in section 4.2 not every platform can communicate
with every OpenCL capable device in the system (e.g. the Intel OpenCL Runtime only works with
CPUs that support SSE4.1 or SSE4.2 - no GPU support) [31].

Context

The environment where the information of the used devices, the host platform and the allocated
bu�ers are managed is called OpenCL Context. A Context also keeps track of the available
Programs and Kernels that are created for a distinct device. A context is always created for a
speci�c platform. Since OpenCL 1.1 a built in OpenCL extension is provided by the Khronos
Group to make it possible to share Bu�ers with an OpenGL or DirectX context which is achieved
by specifying properties during the creation of the OpenCL Context [31].

Devices

A Computation Device can be any device which is supported by the used OpenCL runtime. Usually
the device will be a GPU or the systems CPU. If the system incorporates multiple graphic cards,
each card shows up as a distinct OpenCL Device [31].

4.4.3 Memory

Memory on an OpenCL Device is represented by Bu�er respectively Image Objects. They are
used to reserve memory space in a given context. Internally they can be thought of as pointers
to arrays in the device's memory. Some considerations need to be made, since images can pro�t
from special image processing hardware which can be found on e.g. graphics processing hardware.
Since Memory Objects are linked to contexts it is up to the implementation at which exact time
a Memory Object is copied to the memory of a device [31].

Buffers

To create a Bu�er the size and the Context have to be known in advance. Since the bu�ers
are managed by the Context they are visible to all devices that are associated with a Context.
Access to the Bu�ers can be restricted by supplying �ags (read only, write only, read write) to
the allocation function. To initialize a Bu�er a pointer to an array in the host memory can be
supplied at creation time [31].

Images

Image objects are very similar to Bu�ers but abstracted from the method of storage to allow
device-speci�c optimizations (e.g. texture lookup hardware). Support for Images is optional, but
supported by all major vendors at the moment. As mentioned before, access to the memory

25

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

is abstracted. Access functions instead of direct array access have to be used to read or write
from Image Objects. Furthermore Images have a �xed format which is speci�ed at creation time
(e.g. channel ordering, used elements, ...). Similiar to texture samplers in GPU shader programs,
Sampler Objects are used to de�ne out-of-bounds handling or interpolation methods when reading
from an Image. Since the real hardware implementation is hidden from the programmer it is
possible that adjacent data elements are not contiguously laid out in memory [31].

4.4.4 Execution

Command Queues

To utilize an OpenCL Device a Command Queue has to be created for it �rst. All commands
which should be executed by the Device need to be submitted to this Queue. A Command Queue
is always associated with one speci�c Device and Context. A Queue can be an �in-order� queue
(default) where the commands are processed in the order they where pushed onto the queue or
an �out-of-order� queue where the OpenCL implementation can reorder the commands to allow
certain optimizations [31].

Kernels

An OpenCL Device executes compiled OpenCL C Code (a derivative of the C99 standard) in
chunks of so called Kernels. A Kernel is the basic unit of a device executable and is similar to
a C-Function but it will get executed in parallel on a OpenCL Device. Every OpenCL program
needs to be compiled for a speci�c computing device [31].

Programs

Programs are collections of one or more Kernels and other support functions. Only Kernel-
functions can be invoked from the Host application directly. Before it is possible to use the Kernels
contained in a Program it is necessary to compile the OpenCL source code. All major vendors
do not compile the source to machine code directly. Instead an intermediate language based on
a language independant instruction set is generated. That way it is easier to compile binary code
for di�erent platforms (e.g. CPU's need x86 Code, AMD GPUs use another intermediate language
called IL as input, whereas nVidia use their CUDA language as intermediate output). Since the
introduction of OpenCL 1.2 it is also possible to write libraries which can be linked in during the
Program Build phase [31].

Events

If the used queue is an �out-of-order� queue it is occasionally necessary to set execution depen-
dencies between kernels. This is where Event Objects come into play. Therefore the OpenCL
�clEnqueue*� commands take a list of events as an extra parameter which need to be completed
before the execution of the command starts. In addition it is also possible to get an Event Object
for the current enqueued command. Events are also heavily used for pro�ling purposes.
Because of the sophisticated event model system, it is also possible to use OpenCL for task

parallel computations [31].

26

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

4.5 Execution Flow

After obtaining the OpenCL Platform a typical Application would create the OpenCL Context and
a Command Queue for a speci�c device in a speci�c Context. The next step is to create the
Memory Objects in the given Context and �ll them with data. After that the program's source
code must be built for the used device. If the compilation was successful the default arguments
of the kernel can be set.
The upload and the download of data must be issued manually by pushing enqueueRead* or

enqueueWrite* commands to the command queue.
To run an OpenCL Kernel it is necessary to specify the problem domain as explained in section

4.2.
Lets assume a two-dimensional computational domain (e.g. an image) where the total number

of Work Items is de�ned by the global problem dimension (the image size: 800x600 = 480.000
work items). Each of these Work Items execute the image processing Kernel function. Depending
on the underlying hardware multiple Work Items can be processed in parallel (see �gure 4.5).

Figure 4.5: OpenCL Example Work Distribution

Because of the scheduling of Work Groups and the maximum Work Group size imposed by the
hardware, it is only possible to synchronize the Work Items inside the same Work Group using
Barriers or Memory Fences. If coarser synchronisation is desired Event Objects or calls to �clFinish�
must be used instead to ensure that a Kernel has been executed (see �gure 4.6).

4.6 OpenCL C

OpenCL Kernels are written in OpenCL C, a derivative of the C99 standard which was extended
to meet the needs of parallel programming.

In addition to common C99 datatypes like char, int, �oat, etc. ... OpenCL C also supports the
following types [30]:

• half: 16 bit �oating point type

• vector data types: all datatypes can also be used as vectors with 2, 4, 8 and 16 elements
e.g. �oat4, int8, etc. ... (since OpenCL 1.1 it is also possible to use 3-dimensional vectors)

27

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

Figure 4.6: OpenCL Work Group & Kernel Bound Synchronization (source [31], page 91)

• image1d_t: 1-dimensional image (since OpenCL 1.2)

• image2d_t: 2-dimensional image

• image3d_t: 3-dimensional image

• sampler_t: sampler which is used to read values from an image

• event_t: an event handler

Vector literals also play an important role in OpenCL C. With them it is possible to create
vectors from a set of scalars or other vectors. They can be used in initialization statements or as
constants. If only a scalar values is speci�ed it gets replicated to all vector components [30].

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
uint4 u = (uint4)(1); // u = (1, 1, 1, 1);
float4 f = (float4)((float2)(1.0f, 2.0f), (float2)(1.0f, 2.0f));

OpenCL C also supports the use of vector component speci�ers. With the used vector adressing
it is possible to swizzle the components as well as to replicate them. It is also valid in OpenCL C
to use numeric indices (�.sNNN...�) [30].

float4 a, b, c;
a.wzyx = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
b.xyzw = a.xxyy;
c = a.s0123;

Another alternative of handling vector components is the �.lo� and the �.hi� su�x which refers
to the lower respectively upper half of a given vector [30].

28

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

float4 vf;
float2 low = vf.lo;
float2 high = vf.hi;

Type casts can be performed just like in C with the exception that explicit casts between vector
types are not legal. For this purpose conversion functions �convert_<dest type name>(srctype)�
where de�ned [30].

uchar 4 u;
int 4 c = convert_int4(u);

To reinterpret types as other types the �as_type()� function can be used [30].

float f = 1.0f;
uint u = as_uint(f);

float4 f = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
int4 i = as_int4(f);

To tell the OpenCL compiler exactly where a variable is residing, or a pointer where it is
pointing at, address space quali�ers need to be used. The quali�ers correspond directly to the
di�erent memory locations as described in section 4.3: global, constant, local, private.
If no pre�x is speci�ed private address space is assumed automatically [30].

All operators that are applicable to scalars are also applicable to vector datatypes. To simplify
the computational use, some additional mathematical functions where incorporated as well e.g.
sin, cos, min, max, etc. [30].

A Kernel function must be marked with the attribute kernel. The basic form of a Kernel is
therefore given as

__kernel myFirstKernel(__global float * array)
{

...
}

4.6.1 Limitations of OpenCL C

However there exist some limitations for OpenCL C too [30]:

• Pointer arguments to Kernel Functions must be global, constant or local

• Pointer arguments to Kernel Functions cannot be pointers to pointers

• Function pointers are not allowed

• Image-type variables (e.g. image2d_t) can only be speci�ed as arguments to a function

• Samplers can neither be declared as arrays, pointers, local variables or return values nor can
they be arguments to non Kernel functions or members of structs

29

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

• Bit-�elds are currently not supported

• No variable-sized arrays

• No variadic macros and functions

• No library functions from various C99 standard headers (assert.h, stdio.h, stdlib.h, string.h,
time.h, signal.h ...)

• No recursive functions

• Kernel functions can only have the return type �void�

• Irreducible control �ow (e.g. endless loops with break statements) is illegal in OpenCL
versions prior to 1.2 and implementation de�ned in 1.2

• Writes to a pointer (array) of integral types or structs that contain integral types less than
32-bits in size are not supported in OpenCL versions prior to 1.2

• Arguments which are structs are not allowed to contain OpenCL objects

4.7 Basic Example

After giving an overview of the features of OpenCL a short example on basic initialization and
OpenCL C Code Structure is presented to get a better understanding on how the di�erent parts
work together.

The Host Application Initialization Code code can be written directly with the OpenCL's
C-style API or with a C++ Wrapper (cl.hpp). Since the implementation of this master thesis was
developed with C++ the example code also uses the C++ Wrapper.

First of all an OpenCL Platform and a proper device must be selected. The functions accept
standard template library (STL) vectors because it is possible to install more than one platform
in the operating system environment and to have more than one device with the given type in a
personal computer (e.g. SLI, Cross�re, ...). To keep the application simple we choose the �rst
available platform and ask for all available devices with type GPU. The next step is to de�ne
properties for the context which is going to be created afterwards. In our case we only want to
specify the platform the context should use. At last a Command Queue for the chosen device is
created within the context.

// get the available platforms
cl::vector< cl::Platform > platformList;
cl::Platform::get(&platformList);

// get all available devices with type GPU
cl_device_type devicesToUse = CL_DEVICE_TYPE_GPU;
cl::vector<cl::Device> allDevices, chosenDevices;
platformList[0].getDevices(devicesToUse, &allDevices);

// simply choose the first available device

30

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

chosenDevices.push_back(allDevices[0]);

// define context properties
cl_context_properties contextProperties[] =

{ CL_CONTEXT_PLATFORM, (cl_context_properties) (platformList[0])()
,

0 };

// create the context with the chosen devices
context = cl::Context(chosenDevices, contextProperties);

// obtain a commandqueue for the first device
// within the given context
commandQueue = cl::CommandQueue(context, chosenDevices[0]);

Listing 4.1: OpenCL Basic Startup Code

In the next step the OpenCL Kernel sources are loaded into a Program Object. To generate
binary code out of the sources the Program Object has to be built against the used OpenCL
Devices. If there was no error during compilation, a kernel object can �nally be obtained from the
Program Object. At last some data and OpenCL Bu�ers are generated and �lled with random
data. Non changing Kernel Parameters can be set immediately after the Kernel construction with
the setArg function.

// load cl program code to a string
std::ifstream file("example.cl");
std::string prog(std::istreambuf_iterator<char>(file), (std::

istreambuf_iterator<char>()));

// construct a program object
cl::Program::Sources source(1, std::make_pair(prog.c_str(), prog.

length()+1));
cl::Program program(context, source);

// build program for the devices in chosenDevices
program.build(chosenDevices);

// after the program has been successfully built obtain a kernel
cl::Kernel kernel(program, "add");

// create input data
int *id1 = new int[1024];
int *id2 = new int[1024];
for(int i=0; i<1024; ++i)
{

id1[i] = rand();
id2[i] = rand();

}

// create output array
int *out = new int[1024];

// create opencl buffers for working

31

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

cl::Buffer clInput1(context, CL_MEM_READ_ONLY, sizeof(int)*1024);
cl::Buffer clInput2(context, CL_MEM_READ_ONLY, sizeof(int)*1024);
cl::Buffer clOutput(context, CL_MEM_WRITE_ONLY, sizeof(int)*1024);

// set the buffers as kernel arguments
kernel.setArg(0, clInput1);
kernel.setArg(1, clInput2);
kernel.setArg(2, clOutput);

Listing 4.2: Kernel Generation

At this point a Command Queue as well as the Kernel and some data to work with have been
created. To start working the Command Queue needs to know what to do. For this simple example
we instruct the queue to write the input data to our input bu�ers. Since we speci�ed CL_TRUE
as second paramter the call is blocking until the bu�er has been written to the device.
Then we enqueue the �add� Kernel and wait for its execution. For this call we tell the kernel to
execute on a global problem dimension of 1x1024 elements (-> NDRange(1024)). If the Work
Group size parameter is omitted the OpenCL implementation will determine an appropriate Work
Group size.
Finally the calculated values are read back from the CL-Device to the �out� array.

// enqueue input buffers blocking
commandQueue.enqueueWriteBuffer(

clInput1, CL_TRUE, 0,
(size_t) sizeof(int)*1024, id1);

commandQueue.enqueueWriteBuffer(
clInput1, CL_TRUE, 0,
(size_t) sizeof(int)*1024, id2);

// enqueue the kernel
commandQueue.enqueueNDRangeKernel(

kernel,
cl::NullRange,
cl::NDRange(1024),
cl::NullRange);

// wait for the queue to finish all work
commandQueue.finish();

// read back the results to the out array blocking
commandQueue.enqueueReadBuffer(

clOutput, CL_TRUE, 0,
(size_t)sizeof(int)*1024, out);

Listing 4.3: Get the Queue to Work

The Kernel itself performs an addition between equally indexed elements of clInput1 and
clInput2 and writes the result back to clOutput. This is achieved by obtaining the array index
�rst. In this example's 1-dimensional case, a call to get_global_id(0) yields directly the array
index.
If a 2-dimensional NDRange would have been speci�ed in the enqueueNDRangeKernel call, the
Kernel's array index would be computed as tid = get_global_id(0) + get_global_id(1) ∗

32

CHAPTER 4. A BRIEF INTRODUCTION TO OPENCL

get_global_size(0).

With the computed id the input vectors can be accessed like normal arrays.

__kernel void add(
__global int* clInput1,
__global int* clInput2,
__global int* clOutput)

{
uint tid = get_global_id(0); // get the array index
clOutput[tid] = clInput1[tid] + clInputt[tid];

}

Listing 4.4: The OpenCL Kernel "add"

33

5 Implementation of a Test Framework

This chapter focuses on the implementation of a test framework which utilizes the algorithms
explained in chapter 3 before.

5.1 Host Application

The Host Application of the Test Framework is completely written in C++. Its main purpose is
to initialize, manage and coordinate the used frameworks.

To interface with the window manager and the input handling of the system a GLUT variant
called freeglut is used. freeglut is nearly a full replacement for the GLUT API but also comes
with some improvements, since the last version of GLUT was released in 2001. In contrary to
GLUT, freeglut is an open source project and uses the MIT/X Consortium License which allows
free distribution as well as modi�cations 1.

A minimal GUI toolkit called AntTweakBar2 was used to simplify the parameter input to the
simulation stage. AntTweakBar is a lightweight and easy to use C/C++ library which can be
integrated in many rendering environments.

For convenience a wrapper class GLUTProgram was written. It handles many of GLUTs func-
tions and channelizes them in class member functions which can be overloaded in implementing
classes. It also adds standard features like a camera and a stopwatch for the time measurement in
the update loop. The same was done for the OpenCL functionality in the class CLHelper including
the initialization from an existing OpenGL Context as well as the creation and management of
shared Bu�ers which can be used in both OpenGL and OpenCL contexts. Additionally CLHelper
provides Facilities to load and build OpenCL source code and obtain Kernel Objects after a
successful build.

The implementing class Erosion inherits these two convenience wrappers and extends them
where needed.

Program Startup Sequence:

• Create Erosion class instance

• Call Erosion's Init function which is a start point for further initializations

� Parse commandline parameters

� Create OpenGL environment

1http://freeglut.sourceforge.net/
2http://www.antisphere.com/Wiki/tools:anttweakbar

34

http://freeglut.sourceforge.net/
http://www.antisphere.com/Wiki/tools:anttweakbar

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

� Create OpenCL environment from OpenGL environment

� Init other libraries

� Build GUI

� Load heightmap and setup used bu�ers

� Load textures

� Load GLSL shaders for visualization

� Set desired OpenGL states (Camera, Light, etc. ...)

• Hand over control to the glutMainLoop which calls the main UpdateScene function of the
running GLUTProgram as fast as possible

The main work tasks are then handled in the UpdateScene function of the Erosion class.

Like in every physics simulation a stable framerate for the simulation loop is mandatory. Spikes
in the temporal dimension could introduce instabilities in the water simulation. To avoid this,
the computation function uses a �xed internal timestep m_dt which is independant from the
framerate.

Besides the timestep m_dt we also do not want the visualization to vary in speed. To
accomplish this the simulation update function RunComputations gets called at a �xed but
di�erent rate m_SimulationT ime (see listing 5.1) 3.

static double sumTime = 0.0;
double frameTime = m_Clock.GetLaptimeSeconds();
sumTime += frameTime;
if(sumTime > 1.0)
{

sumTime = 0.0;
RunComputations();

}
else
{

while(sumTime >= m_SimulationTime)
{

3http://gafferongames.com/game-physics/fix-your-timestep/

35

http://gafferongames.com/game-physics/fix-your-timestep/

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

sumTime -= m_SimulationTime;
RunComputations();

}
}

Listing 5.1: Simulation Update Rate

If the update function is not called over a longer period of time (e.g. the window is moved
around) the sumTime would increase drastically and never return to a normal execution. There-
fore it is capped at 1 second. Normally the simulation should take far less than 1 second. If this
is not the case for some reason RunComputations gets executed every frame only once, which
results in a reduced simulation speed and a non constant external simulation rate. Nevertheless
this is the only choice if the simulation takes too much time.

5.1.1 Tool Classes

Additional tool classes where written to simplify the handling of the scene further. In this subsection
the most important classes will be brie�y explained:

• StopWatch

• ShaderProgram

• Camera

• PointLight

• SimpleMarker

• Texture, Cubemap

• EnumGenerator

• Logging

StopWatch

StopWatch is a small class for measuring time beween two code segments.

StopWatch simTime;
simTime.TakeTime();

... code under test ...
simTime.TakeTime();
cout << "code took: " << simTime.GetSeconds() << " s" << endl;

Listing 5.2: StopWatch Use Case

Internally StopWatch uses the PerformanceCounters provided by windows.h4. A small use case
example can be seen in listing 5.2.

4http://support.microsoft.com/kb/172338/EN-US

36

http://support.microsoft.com/kb/172338/EN-US

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

ShaderProgram

The ShaderProgram is the central hub of the object system. ShaderPrograms can incorporate
OpenGL GLSL Vertex, Geometry and Fragment shaders. To build a shader set, a new program
object has to be obtained from the ShaderProgram factory function. After this the di�erent
shader �les can be added to the ShaderProgram object with the function CompileAndAddShader
by specifying the source �le and the shader type. Before linking, shader attributes can be added
as needed. As �rst parameter an EnumIdenti�er which is described later must be provided. The
second parameter is the corresponding variable name in the shader source. If everything is in the
right place, the program can be linked with a call to the Link function (see listing 5.3).

m_Shader = ShaderProgram::NewProgram("Default");
if(0 == m_Shader->CompileAndAddShader(

"vertex_std.glsl", GL_VERTEX_SHADER))
return false;

if(0 == m_Shader->CompileAndAddShader(
"fragment_std.glsl", GL_FRAGMENT_SHADER))
return false;

m_Shader->AddAttribute(
ErosionShaderAttribute::POSITION, "in_Position");

m_Shader->AddAttribute(
ErosionShaderAttribute::NORMALS, "in_Normals");

m_Shader->AddAttribute(
ErosionShaderAttribute::TEXCOORDS, "in_TexCoords");

if(0 == m_Shader->Link())
return false;

Listing 5.3: GLSL Shader Compilation

During the compiling respectively linking process an error log gets printed to the log�le as well as
to the output window.

Camera

The Camera class was designed to be controlled by the keyboard (position) and mouse (rotation)
and is already built in at the GLUTProgram level. It is possible to zoom in and out as well as switch
projection matrices from perspective to orthogonal. The SetupForScene function takes a pointer
to the currently used shader and uses uniform variable names from the header �le ShaderVars.h.

PointLight

The PointLight class is a simple wrapper around the light source parameters. By using the lights
setup function LetThereBeLight the uniform variables for the current shader are set.

SimpleMarker

SimpleMarker (see �gure 5.1) is a simple scene object without a texture and is used to show the
current mouse cursor position in 3d space during edit mode.

37

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

Figure 5.1: SimpleMarker

Texture

Texture encapsulates an OpenGL texture object in addition to the image loading facilities of
the DevIL framework. DevIL5 (former OpenIL) is an OpenGL-style image loading library which
comes with support for many image formats (e.g. jpeg, png, psd, ti�, ...). With DevIL it is
possible to create an OpenGL texture with very few commands. The Texture class also o�ers the
possibility to enable or disable Anisotropic Filtering as well as di�erent texture wrap modes. While
the Texture class is used for common 2d-images there also exists a class for loading CubeMaps
TextureCubeMap.

EnumGenerator

The EnumGenerator provides macros for an easy and painless generation of enums encapsulated
in a namespace with a default name and a string-conversion function e.g. the DefaultShaderAt-
tribute enum (listing 5.4:

// in ShaderProgram.h
#define DefaultShaderAttributeEnum \

(POSITION)(COLOR)(NORMALS)(TEXCOORDS)
DEF_ENUM_HEADER(DefaultShaderAttribute, DefaultShaderAttributeEnum)

// in ShaderProgram.cpp
DEF_ENUM_DATA(DefaultShaderAttribute, DefaultShaderAttributeEnum)

Listing 5.4: EnumGenerator

In the background the macro DEF_ENUM_HEADER generates a class ENUM in namespace
DefaultShaderAttribute with the instances POSITION, COLOR, etc. which also live in the De-
faultShaderAttribute namespace. The ENUM class implements operators like �==� and �!=� and
does auto convert to an EnumIdenti�er which also has those operators de�ned. The ENUM class
also provides a String() function which returns the name of the enum. The string is automatically
obtained from the given names (POSITION, COLOR, ...) and lives in a class static variable to
save memory.

5http://openil.sourceforge.net/

38

http://openil.sourceforge.net/

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

5.1.2 Usage

Figure 5.2: After program startup

At the commandline several parameters can be speci�ed to override certain default values:

−−help print all possible arguments and exit

−−loglevel arg set log level between 0 (fatal) - 4 (detail)

−−width arg change the window width (default: 1280)

−−height arg change the window height (default: 800)

−−heightmap arg the heightmap to load at startup

−−clplatform arg override platform to use (default: �AMD APP�, in case the speci�ed
platform is not found the �rst available is used)

−−cldevice override opencl device type, valid options: 0=GPU, 1=CPU (default: 0)

If called without parameters a default map gets loaded and a screen like in �gure 5.2 is shown.

On the left the StateBar where di�erent runtime switches can be changed or turned on/o� can
be seen. On the right resides the VarBar where algorithmic settings as well as other parameters
of the simulation can be tuned and/or viewed.

InputState

Possible modes are: Navigate, ModifyHeight, ModifyWater, ModifySuspendedSediment andMod-
ifyWaterSources.
The InputState determines the active action for the left mouse button. If the state is Navigate

no action is carried out when clicking the left mouse. Internally this also switches o� calls to

39

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

Figure 5.3: Edit Mode Functions

the EditMode Kernel. If one of the Modify* states is enabled, the mouse cursor controls a 3-
dimensional representation of the mouse position (SimpleMarker) in the scene. The size of the
mouse marker can be changed by holding the ALT key on the keyboard while scrolling the mouse
wheel or by changing the EditModeRadius in the EditMode group of the VarBar. When holding
STRG in edit mode, the position of the marker is locked. Per default a left click adds an amount
of EditModeScale with the given function from EditModeFunction to the set Modify* value (e.g.
ModifyHeight adds the amount to the height�eld). If ALT is used together with the left mouse
click the amount is instead removed from the value array. Figure 5.3 shows the di�erent edit
mode functions: cos, cos2, linear, constant. The not shown smooth function minimizes the
di�erences in height.

VisualisationState

The VisualisationState can be: DefaultRender, DebugParamVis, DefaultDebug and DebugWith-
Normals. The default mode is DefaultRender where the standard visualisation shader is used.
By setting the mode to DebugParamVis it is possible to change the camera view from perspec-
tive to orthogonal mode and observe the algorithms output arrays visually (see �gure 5.4). The
desired output array can be selected via the ParamVis dropdown. If VisualisationState is not
DebugParamVis the ParamVis selection has no e�ect. When selecting the Visualisation states
DefaultDebug and DebugWithNormals an additional debug shader is switched on, where the
velocity (and the normal) vectors are drawn for every grid cell in the scene.

Navigation

To move around in the scene the keys w, a, s, d (forward, backward, left and right) can be used.
Up- and downward movement can be achieved with the keys space and shift. The Camera can
be rotated by holding down the right mouse button while moving the mouse.

Render and Simulation Switches

The other buttons in the upper half of the StateBar consist of switches which enable certain
render features. Via the Show* parameter family the rendering of the scene, textures or skybox

40

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

Figure 5.4: Parameter Visualisation

can be turned on or o�. ShowSoil toggles a color overlay of suspended sediment (cyan) and
accumulated soil (red). The obligatory wireframe and backface culling switches are used to toggle
wireframe rendering respectively backface culling. The switches RunSimulation, HydraulicErosion,
ThermalWeathering, EnableWaterSources, EnableRain and EnableConstantRain enable or disable
parts of the erosion simulation. After the simulation switches a group of function buttons where
integrated to trigger various features of the implementation

SingleShot run a single simulation step and stop afterwards

ResetSimulation reloads the heightmap from the �le and resets all simulation arrays

RecompileKernel triggers a recompilation of the opencl Kernels (useful for on-the-�y
changes)

ReturnCameraHome returns the camera to the home position and resets rotation

SavePSD saves the heightmap to a psd �le in the textures directory (the new
name consists of the current heightmap's name plus a sequential num-
ber)

SaveScreenshot saves a screenshot of the window in the current executing directory

EnableFullScreen switches the current window to fullscreen mode

Simulation Information and Variables Bar

Placed on the right side of the screen is the VarBar. In the top section simulation information
like Frames per Second (FPS) of the main loop and Simulation time (ms) of the computations

41

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

are presented. Iterations shows the current iteration index of the simulation. With the StopAtIt-
eration �eld it is possible to specify an iteration index where the simulation should stop at.
CellGridSize* and PointsSideSize* show sizes of the arrays on which the algorithms are running.
Cells is the number of cells in the simulation. MarkerPosition displays the current position of the
MouseMarker if an edit mode is active.

In the next section main simulation switches can be set: KernelBuild displays the current mode
with which the running Kernels where built. Other options besides Standard are Debug, where all
optimizations are switched o� and Optimized, where all possible optimizations are switched on.

The dropdown WaterSimulationQuality shows the current used pipe neighbourhood. Possible
states are FourPipes and EightPipes.

The next parameter AdvectionMethod de�nes the advection Kernels which are executed for the
advection step of the hydraulic erosion simulation. The implemented approaches are discussed in
chapter 3 - possible options are BackwardEuler and MacCormack advection schemes.

In the heightmap �eld the currently loaded heightmap is shown. By typing in a �lename from
the �textures� directory a new heightmap can be set.

The parameter SimulationTime controls the variable m_SimulationTime introduced in section
5.1 which in�uences the execution rate of the simulation at which a lower value results in a higher
simulation frequency.

The AlgoParam group contains all changeable parameters from the simulation. They can be
directly tuned from the user interface and are immediately applied in the simulation:

TimeStep the used simulation timestep 4t

MinErosionAngle minimum assumed angle for sediment capacity calculation

Kc sediment capacity scaling factor

Ks global dissolve scaling factor

Kd global deposition scaling factor

Kdmax sediment capacity height limit, if water height is less than Kdmax the
sediment capacity is scaled down by the formula described in 3.35

Kh hardness scaling factor

Khmin minimum hardness value

Khrestore restore rate of hardness when no water is in cell

Talus Angle talus angle for the thermal weathering simulation

Ka in�uence of hardness on the weathering simulation

Kt thermal weathering scaling factor

42

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

CellSize the simulations horizontal/vertical cell size lcell

PipeLength the virtual pipes assumed length lpipe

OutflowDampening maximum out�ow �ux factor

AddSoilToWater enables the update of the water height in the erosion-simulation step
(see section 3.5)

CorrectAdvection switches on velocity scaling by cell size for the advection steps

RainIntensity amount scaling factor which is used for random and constant rain

RainFrequency scales the frequency of random rain, 1 is the highest possible frequency

RaindropSize raindrop size multiple

EvaporationRate water evaporation rate scale

In the EditMode section the di�erent edit mode functions, the scale and the radius can be
directly set.

Also the current parameters of the PointLight & the Camera can be changed from the VarBar.

5.2 Erosion Simulation

The whole Simulation is designed to run entirely on the graphics hardware. The only point where
a memory transfer to the device is involved is at startup or when the heightmap is changed (see
section 5.1).

The implementation adapts the model described in chapter 3. The arrangement of the data
bu�ers is as follows

• TerrainHeight - b

• WaterHeight - d

• SuspendedSediment - s

• SuspendedSedimentToggle - �ip-�op bu�er

• OutFlow - QL, QR, QT , QB, QLT , QRT , QRB, QLB

• SoilFlow - V L, V R, V T , V B, V LT , V RT , V RB, V LB

• Velocity - ~v =

(
vx
vy

)
• SedimentCapacity - the cell sediment capacity C

• AccumulatedSoil - contains the accumulated deposited soil

• HardnessCoe�cient - the hardness coe�cient h

43

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

• SoilWetness - mimics the soil wetness

• Normals - generated normals ~n

• TerrainPosition - contains the terrain x-y positions - only used for rendering

• RandBu�er - random numbers for the rain simulation

• StaticWaterSources - water amounts for static water sources constant_rain

• SedimentClampBu�er - only used with the MacCormack scheme

A single bu�er e.g. TerrainHeight consists of a simple �oat array, whereas the Out�ow Bu�er is
an array of �oat8 (vector of 8 �oats) per array cell. Summing up these values leads to a total of
156 bytes per single cell. Considering a problem size of 256x256 the simulation needs 10 223 616
bytes or 9.75 Megabytes. Table 5.1 shows the memory consumption for di�erent grid sizes.

Grid Size Memory
128x128 2.4375 MB
256x256 9.75 MB
512x512 39MB
1024x1024 156MB
2048x2048 624MB

Table 5.1: Memory consumption for di�erent grid sizes

The simulation steps described in chapter 3 were rearranged respectively regrouped to suit the
simulation's needs. Additional Kernels e.g. for the edit mode where added. After all the following
Computation Kernels where written:

1. Edit Mode

2. Water Evaporation / Increase

3. Rand Bu�er Update

4. Terrain Normal Calculation

5. Water Out�ow Update

6. Water Height Update / Velocity Field Calculation / Sediment Capacity Computation

7. Erosion - Deposition

8. Sediment Advection

a) Sediment Advection Euler

b) MacCormack Scheme

i. MacCormack Advection Forward

ii. MacCormack Advection Backward

iii. Advection Limitation

44

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

9. Thermal Weathering Soil Out�ow Calculation

10. Thermal Weathering Height Update

Since the user interface provides many possible con�guration options, not all Kernels are
executed at the same time in every con�guration. Figure 5.5 shows an overview of the possible
Kernel execution paths. The implementation makes use of the OpenCL Event system although
the tested GPU hardware was not able to process the Kernels out of order due to a lack of
hardware support.

Figure 5.5: Kernel Execution Flow

The reason for the high count of OpenCL Kernels is on the one hand the �exibility to switch
on/o� di�erent sections of the simulation. On the other hand parts of the algorithm require a
fully completed previous step because they rely on values from the cells neighbourhood which can
only be guaranteed to be �nalized by dissecting the Kernels and synchronize at their boundaries.

45

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

5.2.1 Water Evaporation / Increase

__Kernel void IncreaseWater(__global float * terrainHeight
, __global float * waterHeight
, __global float * staticWaterSources
, __global float4 * pos
, __global float * soilWetness
, __global ulong * rand
, float dt, float waterOn
, float rainOn, float constantRainOn
, float rainIntensity, float rainFrequency
, uint raindropSize, float evaporationRate

)
{

const uint tid = X + Y * XMAX;

float d1 = waterHeight[tid];

// ----- VISUALIZATION PREPARATION
// write height to pos array
// height is composed of
// * terrain height
// * water height
pos[tid].y = terrainHeight[tid] + d1;

// ----- EVAPORATION
d1 = fmax(0.0f, d1 * (1.0f - (evaporationRate * dt)));

// ----- SOIL WETNESS UPDATE
float sW = soilWetness[tid];
if(d1 > 0.0001f && d1 <= 0.8f)

sW += 100.0f * d1 * dt;
else if (d1 > 0.8f)

sW *= 0.66f;
else

sW -= 0.2f * dt;
soilWetness[tid] = clamp(sW, 0.0f, 100.0f);

// ----- WATER INCREASE
float dInc = 0.0f;

// add static water sources
dInc += waterOn * staticWaterSources[tid];

// add random rain water sources
const uint2 rpos = (uint2)(X, Y) / raindropSize;
const uint rid = rpos.x + rpos.y * XMAX;
if(rand[rid] > LKG_M-(LKG_A*raindropSize/rainFrequency))

dInc += rainOn * rainIntensity * 100.0f;

// add constant rain sources
dInc += constantRainOn * rainIntensity;

46

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

// store d1 as new water height
waterHeight[tid] = d1 + dt * dInc;

}

Listing 5.5: IncreaseWater

The �rst step is a combination of various substeps. First the position array is updated with the
values from the last simulation step. This is part of the visualization preparation. Then the evapo-
ration formula is executed which yields a new value for the water height. At the bottom the water
output of the three water sources constant_rain, random_rain and spring is summed and
added to the current water height d1. The parameters waterOn, rainOn and constantRainOn
are set before the execution of the Kernel and can only have the values 0.0 (disabled) or 1.0
(enabled).

5.2.2 Rand Buffer Update

Kernel void UpdateRandBuffer(__global ulong *rand)
{

uint tid = X + Y * XMAX;
rand[tid] = (rand[tid] * LKG_A + LKG_B) % LKG_M;

}

Listing 5.6: UpdateRandBu�er

The implementation of the RNG update strictly follows the formula from 3.1 and is executed
on every cell of the rand array if random rain is switched on.

5.2.3 Terrain Normal Generation

__Kernel void CalculateNormals(__global float4* pos
, __global float4* norm)

{
const uint tid = X + Y * XMAX;
int4 position = (int4)(X, X, Y, Y);

position = clamp(position + (int4)(-1,1,-1,1)
, (int4)(0,0,0,0)
, (int4)(XMAX-1, XMAX-1, YMAX-1, YMAX-1));

// (x+1, y) - (x-1, y)
float4 x1 = pos[position.y + Y * XMAX] - pos[position.x + Y * XMAX];
// (x, y+1) - (x, y-1)
float4 y1 = pos[X + position.w * XMAX] - pos[X + position.z * XMAX];

// (x-1, y-1) - (x+1, y+1)
float4 x2 = pos[position.x + position.z * XMAX]

- pos[position.y + position.w * XMAX];
// (x+1, y-1) - (x-1, y+1)
float4 y2 = pos[position.y + position.z * XMAX]

- pos[position.x + position.w * XMAX];

47

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

float4 N0 = cross(x1, y1);
float4 N1 = cross(x2, y2);

norm[tid] = (float4)(-normalize(N0+N1).xyz, 0.0f);
}

Listing 5.7: CalculateNormals

The terrain normal generation is directly performed o� the position mesh which is a combination
of terrain- and water-height over an equally spaced grid. The normals are computed as cross
product of a vector in x-direction (from the left to the right neighbour) and a vector in y-direction
(from the top to the bottom neighbour) and additionally the same in the diagonals. The computed
positions are clamped against zero and maximum indizes of the grid to ensure that no invalid values
are introduced.

5.2.4 Water outflow calculation

__Kernel void CalculateOutflowFlux(__global float * terrainHeight
, __global float * waterHeight
, __global float8 * flux
, float dt, float outflowDampening
, float lcell, float lpipe)

{
const uint tid = X + Y * XMAX;

// my terrain height
float b = terrainHeight[tid];
// my water height
float d1 = waterHeight[tid];

// ----- update outflow flux
// get the height of all neighbour cells, set my height as default

if there is no cell (e.g. border)
// get the intermediate water height (d1) of all neighbour cells

#if defined WATER_SIM_L
float4 BN = get_neumann(b, terrainHeight);
float4 D1 = get_neumann(d1, waterHeight);

#elif defined WATER_SIM_H
float8 BN = get_moore(b, terrainHeight);
float8 D1 = get_moore(d1, waterHeight);

#endif

// calc cross sectional area of pipe
const float Apipe = 0.0f, d1 * lcell;

// compute outflow flux
#if defined WATER_SIM_L

const float kFlow = dt * Apipe * g / lpipe;

48

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

const float4 outFlux = fmax((float4)(0.0f)
, flux[tid].s0123 + kFlow * ((float4)(b + d1) - BN - D1));

const float sumFluxDt = getSum4(outFlux) * dt;

#elif defined WATER_SIM_H
const float8 kFlow = dt * Apipe * g

/ (float8)((float4) lpipe, (float4) lpipe * M_SQRT2);

const float8 outFlux = fmax((float8)(0.0f)
, flux[tid] + kFlow * ((float8)(b + d1) - BN - D1));

const float sumFluxDt = getSum8(outFlux) * dt;

#endif

// max scale is less than 1.0f e.g. 0.99f -> to surpress oscillation
// if there is no water (d1=0.0f) => Kscale will drop to 0.0f
const float kScale = clamp(d1*lcell*lcell/sumFluxDt, 0.0f,

outflowDampening);

// write output value back to flux array
#if defined WATER_SIM_L

flux[tid].s0123 = kScale * outFlux;

#elif defined WATER_SIM_H
flux[tid] = kScale * outFlux;

#endif
}

Listing 5.8: CalculateOut�owFlux

First the current cell's terrain and water height are obtained. Then the terrain and water height
of the neighbours are loaded into �oat4/�oat8 variables. If the current cell is at a border position,
the supplied �rst parameter is returned by the get_moore or get_neumann functions in the
according vector component. As next step the cross sectional area of the pipe is computed. Based
on this area, the heights and water heights and the gravity constant g the di�erent execution
paths of the Kernel compute either a �oat4 or �oat8 version of the outFlux variable. The �nal
sumFluxDt value is then calculated via a special function which uses the possibility of OpenCL
C to add a vectors low and high component - for an example see the getSum2 function in listing 5.9

inline float getSum2(float2 sumvalues)
{

return sumvalues.lo + sumvalues.hi;
}

Listing 5.9: getSum2 reduction function

As last step the outFlux variable is scaled down by the kScale factor which uses the original
formula of Mei et al. [23]. The out�owDampening parameter was introduced to softly relax the

49

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

�ow rate over time. This also has a slightly stabilizing e�ect on the water simulation, since big
outFlux values fade out because of the dampening.

5.2.5 Water height update / Velocity Field calculation / Sediment Capacity
computation

__Kernel void CalculateVelocity(__global float * waterHeight
, __global float8 * flux
, __global float2 * velocity
, __global float * sedimentCapacity
, __global float4 * norm
, float dt, float Kc
, float Kdmax, float lcell
, float minErosionAngle, float

maxSpeedScale)
{

const uint tid = X + Y * XMAX;

// ----- update water height

float d1 = waterHeight[tid];

#if defined WATER_SIM_L
float4 fOut = flux[tid].s0123;
float4 fIn = get_input_neumann(flux);

const float dV = dt * (getSum4(fIn) - getSum4(fOut));

#elif defined WATER_SIM_H
float8 fOut = flux[tid];
float8 fIn = get_input_moore(flux);

const float dV = dt * (getSum8(fIn) - getSum8(fOut));

#endif

// intermediate water height d2
const float d2 = d1 + dV/(lcell*lcell);

// ----- velocity update

const float dAvg = M_ONEHALF * (d1 + d2);

// restrict inverse average to avoid to large numbers for velocity
const float invAvgL = clamp(1.0f / dAvg*lcell, 0.0f, maxSpeedScale

);

#if defined WATER_SIM_L
// dWx = fR(x-1,y) - fL(x,y) + fR(x,y) - fL(x+1,y)
// dWy = fB(x,y-1) - fT(x,y) + fB(x,y) - fT(x,y+1)
float2 vel = M_ONEHALF * (float2)(

fIn.y - fOut.x + fOut.y - fIn.x,

50

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

fIn.w - fOut.z + fOut.w - fIn.z) * invAvgL;

#elif defined WATER_SIM_H
// x component from diagonal neighbours
float tmp = (fIn.s6-fOut.s4+fOut.s5-fIn.s7+fOut.s6-fIn.s4+fIn.s5-

fOut.s7);
// horizontal
float dWx = M_ONEHALF * (fIn.s1 - fOut.s0 + fOut.s1 - fIn.s0 + tmp)

* invAvgL;

// y component from diagonal neighbours
tmp = (fIn.s7-fOut.s5+fOut.s6-fIn.s4+fOut.s7-fIn.s5-fOut.s4+fIn.s6);
// vertical
float dWy = M_ONEHALF * (fIn.s3 - fOut.s2 + fOut.s3 - fIn.s2 + tmp)

* invAvgL;

float2 vel = (float2)(dWx, dWy);

#endif

// ----- calc sediment capacity

const float lVel = length(vel);

// compute local tilt angle
float alpha = (alpha < minErosionAngle) ? minErosionAngle : acos(

dot(norm[tid], UP_VECTOR));

// scaling based on the water depth
const float lmax = (d2>=Kdmax) ? 1.0f : (1.0f - ((Kdmax-d2)/Kdmax));

// calculate sediment transport capacity of the flow
sedimentCapacity[tid] = Kc * sin(alpha) * lVel * lmax;

// save velocity for next step
velocity[tid] = vel;
// save d2 for next step
waterHeight[tid] = d2;

}

Listing 5.10: CalculateVelocity

The CalculateVelocity Kernel also performs multiple actions at once. First of all the water
height is updated to d2 by using the di�erence of the in�ows and the out�ows of the current cell
which where computed in the step before.
Then the average water height dAvg between the water update steps d1 and d2 is obtained.

With this value and the cellSize the inverse of the cell area invAvgL can be calculated.
Because the velocity is computed dividing the �ow rate by the area and the area is de�ned as

dAvg ∗ lcell the velocities can get very big for small water heights. This holds true especially at
the �uids borders. A way to regulate this is to limit the invAvgL by maxSpeedScale. Anyway
this value is a key point in the simulation since the velocity is a major in�uencing factor in the
sediment capacity calculation.

51

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

The individual components of the velocity vector are calculated by summing up x- respectively
the y-parts of the current in�ow and out�ow.
In the next step the sediment capacity gets evaluated and the resulting values are saved back

to the data arrays.

5.2.6 Erosion - Deposition

__Kernel void ErosionDeposition(__global float * terrainHeight
, __global float * waterHeight
, __global float * suspendedSediment
, __global float * sedimentCapacity
, __global float * accumulatedSoil
, __global float * hardness
, float dt, float Ks
, float Kd, float Kh
, float Rmin, float Rrestore
, float addSoilToWater)

{
const uint tid = X + Y * XMAX;

const float b = terrainHeight[tid];
const float d3 = waterHeight[tid];
const float st = suspendedSediment[tid];
const float C = sedimentCapacity[tid];
const float a = accumulatedSoil[tid];
float h = hardness[tid];

// calculate deposited / dissolved amount
const float dSoil = (C > st)? (- Ks * h * (C - st)) : (Kd * (st - C

));

// update hardness coefficient
h = fmax(Rmin, h - Kh * fmax(0.0f, dSoil));
// if water height is less than a certain amount
// restore hardness by Rrestore
hardness[tid] = (d3 < 0.0001f) ? (fmin(1.0f, h + Rrestore * dt)) : (

h) ;

terrainHeight[tid] = b + dSoil;
waterHeight[tid] = fmax(0.0f, d3 - addSoilToWater * dSoil);
suspendedSediment[tid] = fmax(0.0f, st - dSoil);

accumulatedSoil[tid] = a + dSoil;
}

Listing 5.11: ErosionDeposition

The ErosionDeposition Kernel handles the calculation of the dissolved or deposited amount
dSoil. Also the hardness coe�cient is updated in this Kernel. If no or very little water is in the
current cell the hardness gets slowly restored with a scale factor of Rrestore. Another important
part is the limitation of the waterHeight and the suspendedSediment amount to zero since negative
values do not make any sense for water or suspended sediment.

52

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

5.2.7 Sediment Advection

The sediment advection has multiple execution paths. If None is selected no Kernel gets executed.
For the mode BackwardEuler the single BackwardEuler Kernel is scheduled. In case of mode
MacCormack the three Kernels

• AdvectSedimentForward

• AdvectSedimentBackward

• LimitAdvection

are enqueued.

BackwardEuler

__Kernel void EulerAdvection(__global float * s1
, __global float * stpt
, __global float2 * velocity
, float dt
, float lcell)

{
const uint tid = X + Y * XMAX;

const float2 targetPos = (float2)(X, Y)
- velocity[tid] * dt / lcell;

stpt[tid] = bilerp(targetPos, s1);
}

Listing 5.12: EulerAdvection

The EulerAdvection Kernel simply calculates a new grid position from the current position and
the given velocity at this point. To obtain the new value for the suspended sediment, a bilinear
interpolation between the nearest neighbours is performed.

MacCormack Advection

__Kernel void AdvectSedimentForward(__global float * s1
// s n

, __global float * sedimentInp1
// s^ n+1

, __global float2 * sedimentClamp
, __global float2 * velocity
, float dt , float lcell)

{
const int2 pos = (int2)(X, Y);
const uint tid = X + Y * XMAX;

const float2 targetPos = (float2)(X, Y)
- velocity[tid] * dt / lcell;

53

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

const float2 ab = clamp(targetPos - floor(targetPos), (float2)(0.0f
), (float2)(1.0f));

float4 TMP = get_nearest_neighbours(targetPos, s1);

sedimentInp1[tid] = (1.0f-ab.x) * (1.0f-ab.y) * TMP.x
+ ab.x * (1.0f-ab.y) * TMP.y
+ (1.0f-ab.x) * ab.y * TMP.z
+ ab.x * ab.y * TMP.w ;

sedimentClamp[tid] = (float2)(getMin4(TMP), getMax4(TMP));
}

Listing 5.13: AdvectSedimentForward

The forward operator corresponds to the euler step backward in time. Although the operations
are equal to the EulerAdvection Kernel the AdvectSedimentForward Kernel does not use the
bilerp function. Instead the sediment values of the nearest neighbours are used to determine a
minimum/maximum value for the limiter stage of the MacCormack advection. This values are
saved in the sedimentClamp bu�er.

__Kernel void AdvectSedimentBackward(__global float * sedimentInp1
, __global float * errorEstimate
, __global float2 * velocity
, float dt, float lcell)

{
const int2 pos = (int2)(X, Y);
const uint tid = X + Y * XMAX;

// save current value of errorEstimate -> its sn
float sn = errorEstimate[tid];

// step forward in time
const float2 targetPos = convert_float2(pos)

+ velocity[tid] * dt / lcell;

// s^ n
const float sInp = bilerp(targetPos, sedimentInp1);

// save the error estimate: sediment - sedimentN
errorEstimate[tid] = sn - sInp;

}

Listing 5.14: AdvectSedimentBackward

The Kernel AdvectSedimentBackward is again basically identical to EulerAdvection. The
di�erence lies in the calculation of targetPos - instead of going backward we take a step forward
in time. With the new computed value the error estimate can be calculated and saved for the
next stage.

54

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

__Kernel void LimitAdvection(__global float * errorEstimate
, __global float * sedimentNp1
, __global float2 * sedimentClamp)

{
const uint tid = X + Y * XMAX;

const float errorEst = errorEstimate[tid]; // sn - s^ n
const float sInp1 = sedimentNp1[tid]; // s^ n+1

const float2 clampValues = sedimentClamp[tid];

// set calculcated amount of suspended sediment in cell
// limited by 1st order values
sedimentNp1[tid] = clamp(sInp1 + M_ONEHALF*errorEst

, clampValues.x, clampValues.y);
}

Listing 5.15: LimitAdvection

LimitAdvection computes the �nal resulting sediment amount for the current cell. As a �nal
step the 2nd order accuracy value is limited by 1st order accuracy min/max values computed from
the original implicit euler advected �eld.

5.2.8 Thermal Weathering Soil Outflow Calculation

__Kernel void CalculateWeathering(__global float * terrainHeight
, __global float8 * soilFlow
, __global float4 * normals
, __global float * hardness
, __global float * soilWetness
, float dt , float lcell
, float talusAngle, float Ka
, float Kt, float cellScale
, float wetnessScale)

{
const uint tid = X + Y * XMAX;

const float currentHeight = terrainHeight[tid];
const float h = hardness[tid];

// get the terrain height of all neighbours
const float8 neighbourHeights = get_moore(currentHeight,

terrainHeight);

// currentHeigth - neighbourHeight is positive if neighbours heights
are less then the current height

// max returns 0.0f is neighbours height is bigger than
currentHeight

const float8 heightDiff = fmax((float8) 0.0f, (float8)currentHeight
-neighbourHeights);

55

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

const float8 alpha = atan(heightDiff / (cellScale*(float8)((float4)
lcell, (float4)(lcell*M_SQRT2))));

const float materialTalus = h * Ka + talusAngle + ((soilWetness[tid
]/30.0f)-20.0f);

const int8 alphaGreaterThanTalus = isgreater(alpha*M_TO_DEGREE,
materialTalus);

// mask out the other heights which are not greater than the talus
angle

const float8 heightsUnderTalus = select(
(float8)0.0f,
(float8)1.0f,
alphaGreaterThanTalus) * heightDiff;

// calculate the maximum volume to be moved
const float dV = dt*Kt*h*lcell*lcell*M_ONEHALF*getMax8(heightDiff);

// calc sum of heights
const float sum = getSum8(heightsUnderTalus);

// update soilFlow
soilFlow[tid] = (sum > 0.0f) ? (dV * heightsUnderTalus / sum)

: ((float8)0.0f);
}

Listing 5.16: CalculateWeathering

CalculateWeathering uses all eight neighbours of the current cell. At �rst the height di�erences
between the current cell and the neighbours are calculated. By limiting heightDi� to 0.0f the
neighbours which are higher than the current cell are masked out.
After this the local talus angle to the neighbour is computed. For the diagonal neighbours the
adjusted cell size lcell ∗

√
2 is used. Since the visual spacing of the grid gets scaled at load time,

the cell size needs to be scaled here too or the slopes would look wrong in the visualization.
In the next step the computed terrain angle is then compared to the material's talus angle
materialTalus. The talus angle is mainly in�uenced by the material constant as well as the local
hardness coe�cient. If the coe�cient is low the angle is close to the material constant, otherwise
the material angle gets higher which means that it withstands bigger angles.
As another addition soilWetness was added to the materialTalus computation. If a material e.g.
gets in solution it cannot be piled up very high, on the other side if the material is only slightly
wet it withstands bigger angles. Since soilWetness mimics this behavior by mapping zero or very
big water values to a low percent value and slight wetness to a big percent value, it can be used
to adjust the materialAngle accordingly.
By using the int8 mask alphaGreaterThanTalus the neighbours which should not get any material
are masked out in the variable heightsUnderTalus. The maximum volume dV going to be moved
is then calculated as shown in chapter 3.

5.2.9 Thermal Weathering Height Update

__Kernel void WeatheringTerrainHeightUpdate(

56

CHAPTER 5. IMPLEMENTATION OF A TEST FRAMEWORK

__global float * terrainHeight
, __global float8 * soilFlow)

{
const uint tid = X + Y * XMAX;

float currentHeight = terrainHeight[tid];

float8 outgoingSoil = soilFlow[tid];
float8 incomingSoil = get_input_moore(soilFlow);

// new height = current height + incoming - outgoing
terrainHeight[tid] = currentHeight + getSum8(incomingSoil) - getSum8

(outgoingSoil);
}

Listing 5.17: WeatheringTerrainHeightUpdate

The Kernel WeatheringTerrainHeightUpdate simply cumulates the soilFlow for the current cell
and adds it to the cell's height.

5.3 Visualization

Multiple shaders where written to visualize certain parts of the simulaton

• SceneShader - phong shading and lighting and water re�ection/refraction shading

• DebugShader - visualizes the calculated velocities and normals as color coded vectors in the
scene

• ParamVisualizationShader - visualizes various simulation parameters by color coding using
an orthogonal projection (see �gure 5.4)

• SkyboxShader - draws a box from the cubemap textures

• ColorShader - uses only the material color as well as the distance to the light source

The scene rendering directly uses the updated values of the TerrainPosition bu�er for the vertex
positions. Multiple texture layers are added during the fragment shader pass of the SceneShader
depending on the local accumulated soil and on the material wetness bu�er as well as on the local
water height. The used lighting model is the phong model. The re�ection on the water uses a
simple cubemap lookup, whereas the refraction is calculated by o�setting the texture coordinates
according to the local normal and a �xed scale. Then the two values are mixed together using the
fresnel term.

57

6 Results

This chapter presents the results achieved with the di�erent variants of the erosion algorithm. At
�rst the thermal weathering stage is tested in section 6.1. The next section 6.2 compares the
di�erent hydraulic erosion variants implemented, whereas in the following section 6.3 the results
with the combined algorithm are presented, whereupon subsection 6.3.1 compares some natural
phenomena to results which where achieved with the algorithm. At last the performance of the
implementation is discussed in section 6.4.

6.1 Thermal Weathering

(a) Test Scene 1 (b) Test Scene 1 after 1000 iterations

Figure 6.1: Thermal Weathering Test 1

The results from the thermal erosion stage can be seen in �gure 6.1 and �gure 6.2. For both
simulations an unusually high value for the thermal weathering constant Kt (100.0 & 50.0) was
chosen to see the e�ects more clearly. As expected thermal weathering smoothes the edges of the
terrain.

6.2 Hydraulic Erosion Neighbourhood and Advection

In �gure 6.3 the erosion of a �PG� shaped mountain is shown. For this picture the water simulation
was set to FourPipes with BackwardEuler advection. The parameters where set to mimic the
behavior of the original testcase from Mei et. al [23]. The �rst picture depcits the initial terrain.
The picture at the right shows the simulation a few iterations after turning on the random rain.
In the lower left picture some deposition can already be seen. The picture at the right bottom

58

CHAPTER 6. RESULTS

(a) Test Scene 2 (b) Test Scene 2 after 1000 iterations

Figure 6.2: Thermal Weathering Test 2

was taken after all the water has been evaporated. The cyan color indicates suspended sediment
in the water, while red stands for deposited sediment.

Test Setup

To test the di�erent implemented neighbourhoods as well as the di�erent advection stages, two
di�erent scenes were simulated with random rain. All tests for a scene share the same test
parameters, only the pipe model and the advection was changed. For each scene four test runs
with the following settings where made:

• Neighbourhood: 4 Pipes - Advection: Euler

• Neighbourhood: 4 Pipes - Advection: Mac Cormack

• Neighbourhood: 8 Pipes - Advection: Euler

• Neighbourhood: 8 Pipes - Advection: Mac Cormack

In addition to the scene pictures the sediment images where also added for comparison. The
results can be seen in �gures 6.4, 6.6, 6.7 and 6.8.
The used algorithm parameters can be seen in table 6.1 (parameters which are not used by the

tested erosion model are omitted).

Test Scene “PG”

The test scene �PG� uses a similar heightmap to the one Mei et al. used in their erosion simulation
test. Figure 6.4 and 6.6 show the outcome of the simulation. Although the results look similar at
�rst, the di�erences are in the details. Comparing �gure 6.5 (a) to 6.5 (b) we can see, that (b)
exposes more structure at the sedimentation sites, where (a) looks just �at - the same observation
applies to (c) and respectively (d). When looking at the eroded ridges, we can see that in (a)
and (b) the lines are rather straight, whereas in (c) and (d) they also take more diagonal paths.
Comparing the suspended sediment maps it can be clearly seen, that the MacCormack scheme

59

CHAPTER 6. RESULTS

Figure 6.3: �PG� shaped mountain example

produces much more detail and structure than the simple Euler Advection, which looks like a
blurred version of the MacCormack scheme.

Test Scene “Pyramid”

The conclusions from the test scene �PG� also apply to the �Pyramid� test scene. Again it can be
observed that straight lines towards the bottom begin to emerge with a four pipe neighbourhood,
while an eight pipe neighbourhood allows more diagonal �ow and therefore looks more natural.
The comparison of the advection schemes also yield the same results as in test scene �PG�. The
results can be seen in �gure 6.7 and 6.8.

6.3 Full Algorithm Results

In �gure 6.9 the combined results of the hydraulic erosion and the thermal weathering can be
observed on a larger grid (1024x1024). While the hydraulic erosion stage alone produces deep
ridges, the thermal erosion smoothes out these e�ects. However the whole simulation is still very
sensitive to the chosen parameters and has to be adapted for the respective situation.

60

CHAPTER 6. RESULTS

Parameter Test Scene �PG� Test Scene �Pyramid�
TimeStep 0.01 0.01

MinErosionAngle 10.0 10.0
MaxSpeedScale 50.0 max.

Kc 1.0 1.0
Ks 0.01 0.0001
Kd 0.001 0.1

Kdmax 4.0 1.0
Kh 0.01 0.01

Khmin 0.1 0.1
Khrestore 0.01 0.01
CellSize 1.0 1.0

PipeLength 1.0 1.0
Out�owDampening 0.995 0.995
AddSoilToWater true true
CorrectAdvection true true
RainIntensity 10.0 10.0
RainFrequency 2 2
RaindropSize 2 2

EvaporationRate 0.1 0.1

Table 6.1: Algorithm Test Parameters

6.3.1 Comparison to Natural Phenomena

To prove that the algorithm produces results which can be also observed in nature, several real
scenes were taken and simulated with the algorithm as close as possible. The results can be seen
in �gure 6.10 and �gure 6.11.

6.4 Performance Measurements

Test Setup

• CPU: Intel Core i5 750 @ 2.66 GHz, 4 Compute Units

• GPU: AMD Radeon HD 6870 @ 900 MHz, 14 Compute Units, 1GB Memory

• Memory: 8GB DDR3 RAM

• OS: Windows 7, 64 Bit with SP1

• Maps: bds_128, bds_256, bds_512, bds_1024, bds_2048

The performance measurements of the individual Kernels where conducted with the AMD
APP Pro�ler. For the overall time the StopWatch class was used. Each test took place on the
same map - only the grid size was scaled down for the respective case. All values are averages

1http://en.wikipedia.org/wiki/File:Devils_Tower_CROP.jpg
2http://www.flickr.com/people/dolgin/

61

http://en.wikipedia.org/wiki/File:Devils_Tower_CROP.jpg
http://www.flickr.com/people/dolgin/

CHAPTER 6. RESULTS

measured in milliseconds (ms) over 1000 simulation iterations.

For grid sizes 128, 256 and 512 the simulation time only approximately doubles for an exponential
increase of cells. Starting with grid size 1024 this factor increases to three whereas at size 2048
it is at approximately 3.5. From eight pipes to four pipes the computation times where lower but
this did not have as much impact on the computation time as expected. Apparently there are
other bottlenecks which limit the simulation time to an upper bound (e.g. the Weathering Kernels
use a Moore neighbourhood in every test case).
Figures & result tables can be found in 6.12, 6.13 as well as 6.14.

For the CPU measurements the Intel OpenCL SDK was used and the OpenCL Device was
simply switched to type CPU. Only totals where measured to have comparative overall results to
the GPU variant.
The achieved speedup to the compared �CPU only� measurement was between 5 and 23

times (see table 6.4). Considering Jákó [26] who reports a speedup of approximately 100 times
compared to a �CPU only� solution these values seem very low. However the CPU solution
measured by Jákó was not reported to be accelerated in any way whilst the CPU measurements
(see �gure 6.14) where parallelized and auto-vectorized automatically by using the Intel OpenCL
SDK. Moreover simulation times measured with the AMD APP SDK and Device Type CPU took
approximately twice the times achieved with the Intel SDK.

Grid Size GPU CPU Speedup CPU/GPU
128x128 0.88 4.4 5
256x256 1.42 11 7,75
512x512 2.72 41 14,9
1024x1024 8.8 163 18.52
2048x2048 29.87 685 22.93

Table 6.2: Comparison CPU vs. GPU

62

CHAPTER 6. RESULTS

(a) �PG�, 4 Pipes, Euler Advection (b) �PG�, 4 Pipes, MacCormack Advection

(c) �PG�, 8 Pipes, Euler Advection (d) �PG�, 8 Pipes, MacCormack Advection

Figure 6.4: 4 vs. 8 Pipes - Euler vs. Mac Cormack Advection - �PG�

63

CHAPTER 6. RESULTS

(a) �PG�, 4 Pipes, Euler Advection (b) �PG�, 4 Pipes, MacCormack Advection

(c) �PG�, 8 Pipes, Euler Advection (d) �PG�, 8 Pipes, MacCormack Advection

Figure 6.5: 4 vs. 8 Pipes - Euler vs. Mac Cormack Advection - �PG� Detail

64

CHAPTER 6. RESULTS

(a) �PG�, 4 Pipes, Euler Advection Detail (b) �PG�, 4 Pipes, MacCormack Advection Detail

(c) �PG�, 8 Pipes, Euler Advection Detail (d) �PG�, 8 Pipes, MacCormack Advection Detail

Figure 6.6: 4 vs. 8 Pipes - Euler vs. Mac Cormack Advection Sediment - �PG�

65

CHAPTER 6. RESULTS

(a) Pyramid, 4 Pipes, Euler Advection (b) Pyramid, 4 Pipes, MacCormack Advection

(c) Pyramid, 8 Pipes, Euler Advection (d) Pyramid, 8 Pipes, MacCormack Advection

Figure 6.7: 4 vs. 8 Pipes - Euler vs. Mac Cormack Advection - Pyramid

66

CHAPTER 6. RESULTS

(a) Pyramid, 4 Pipes, Euler Advection (b) Pyramid, 4 Pipes, MacCormack Advection

(c) Pyramid, 8 Pipes, Euler Advection (d) Pyramid, 8 Pipes, MacCormack Advection

Figure 6.8: 4 vs. 8 Pipes - Euler vs. Mac Cormack Advection Sediment - Pyramid

67

CHAPTER 6. RESULTS

(a) Initial

(b) After Erosion

Figure 6.9: Full Erosion Model Example

68

CHAPTER 6. RESULTS

(a) Devils Tower

(b) Simulation

Figure 6.10: Devils Tower in Wyoming, (photographed by Colin Faulkingham 1)

69

CHAPTER 6. RESULTS

(a) Grooves

(b) Simulation

Figure 6.11: Grooves, (photographed by Avi Dolgin 2)

70

CHAPTER 6. RESULTS

1
2

8
x
1

2
8

2
5

6
x
2

5
6

5
1

2
x
5

1
2

1
0

2
4

x
1

0
2

4
2

0
4

8
x
2

0
4

8

C
a

lc
u

la
te

 V
e

lo
c
it

y
0

.0
3

1
1

1
0

.1
0

5
9

4
0

.3
8

1
.4

5
6

5
.7

7
4

C
a

lc
u

la
te

 O
u

tf
lo

w
0

.0
2

4
8

8
0

.0
7

1
2

9
0

.2
5

0
.9

7
1

3
.8

2
3

C
a

lc
u

la
te

 W
e

a
th

e
ri

n
g

0
.0

2
5

0
1

0
.0

7
3

5
0

.2
7

1
.0

6
4

4
.1

9
7

W
e

a
th

e
ri

n
g

 H
e

ig
h

t
0

.0
2

4
2

7
0

.1
0

6
8

9
0

.3
6

9
1

.3
0

5
4

.9
9

6

In
cr

e
a

se
 W

a
te

r
0

.0
1

7
3

3
0

.0
4

6
4

0
.1

5
5

7
0

.5
7

7
2

.2
5

4

E
ro

si
o

n
0

.0
1

1
8

3
0

.0
3

2
8

1
0

.1
2

3
0

.4
9

1
.9

2
0

8

A
d

v
e

c
t

F
o

rw
a

rd
0

.0
1

1
7

0
.0

2
7

9
1

0
.0

9
4

8
0

.3
6

9
7

1
.4

2
3

A
d

v
e

c
t

B
a

c
k
w

a
rd

0
.0

1
1

4
9

0
.0

2
8

0
6

0
.0

9
6

3
0

.3
6

9
6

1
.4

2
5

C
a

lc
 N

o
rm

a
ls

0
.0

1
0

2
6

0
.0

2
4

6
9

0
.0

8
2

6
9

0
.3

1
3

7
1

.2
2

3

Li
m

it
 A

d
v
e

c
ti

o
n

0
.0

0
7

3
3

0
.0

1
5

5
5

0
.0

5
0

3
1

0
.1

9
1

3
9

0
.7

0
9

U
p

d
a

te
 R

a
n

d
0

.0
0

6
4

0
.0

1
2

7
3

0
.0

4
2

0
3

0
.1

5
9

9
8

0
.6

0
5

T
o

ta
l

0
.8

8
1

.4
2

2
.7

2
8

.8
2

9
.8

7

0
.0

0
1

0
.0

1

0
.11

1
0

1
0

0

Time [ms]

A
M

D
 R

a
d

e
o

n
 6

8
7

0
 H

D
 @

 9
0

0
M

H
z

-
1

4
 C

o
m

p
u

te
 U

n
it

s
-

8
 P

ip
e

s

F
ig
u
re

6.
12
:
M
ea
su
re
m
en
t
1,

8
P
ip
es

&
M
ac
C
or
m
ac
k
A
d
ve
ct
io
n

71

CHAPTER 6. RESULTS

1
2

8
x
1

2
8

2
5

6
x
2

5
6

5
1

2
x
5

1
2

1
0

2
4

x
1

0
2

4
2

0
4

8
x
2

0
4

8

C
a

lc
u

la
te

 V
e

lo
ci

ty
0

.0
2

4
4

4
0

.0
8

8
7

7
0

.3
1

7
1

.2
3

1
3

5
4

.7
7

7

C
a

lc
u

la
te

 O
u

tf
lo

w
0

.0
1

8
7

0
.0

5
3

0
6

0
.1

9
1

8
0

.7
5

4
2

.9
7

4

C
a

lc
u

la
te

 W
e

a
th

e
ri

n
g

0
.0

2
4

8
8

0
.0

7
3

5
1

0
.2

6
9

1
.0

6
2

9
4

.2

W
e

a
th

e
ri

n
g

 H
e

ig
h

t
0

.0
2

4
2

0
.1

0
6

8
9

0
.3

6
7

7
5

1
.3

1
3

5
8

5
.0

1
5

In
cr

e
a

se
 W

a
te

r
0

.0
1

7
0

.0
4

6
5

2
0

.1
5

5
6

0
.5

7
7

6
2

.2
6

5

E
ro

si
o

n
0

.0
1

1
3

0
.0

3
3

1
6

0
.1

2
1

9
9

0
.4

9
1

.9
2

9

C
a

lc
 N

o
rm

a
ls

0
.0

1
0

2
0

.0
2

4
6

4
0

.0
8

1
0

6
0

.3
1

1
9

3
1

.2
3

0
7

8

U
p

d
a

te
 R

a
n

d
0

.0
0

6
2

7
0

.0
1

2
7

0
.0

4
0

5
8

0
.1

5
9

5
0

.6
0

9
5

8

E
u

le
r

A
d

v
e

ct
0

.0
1

1
4

0
.0

2
7

0
7

0
.0

8
9

8
8

0
.3

5
1

4
7

1
.3

6
0

8
8

T
o

ta
l

0
.8

4
5

1
.1

6
6

3
2

.4
3

7
.3

8
2

5
.7

6

0
.0

0
0

9
7

6
6

0
.0

3
1

2
51

3
2

Time [ms]

A
M

D
 R

a
d

e
o

n
 6

8
7

0
 H

D
 @

 9
0

0
M

H
z

-
1

4
 C

o
m

p
u

te
 U

n
it

s
-

4
 P

ip
e

s

F
ig
u
re

6.
13
:
M
ea
su
re
m
en
t
2,

4
P
ip
es

&
E
u
le
r
A
d
ve
ct
io
n

72

CHAPTER 6. RESULTS

1
2

8
x
1

2
8

2
5

6
x
2

5
6

5
1

2
x
5

1
2

1
0

2
4

x
1

0
2

4
2

0
4

8
x
2

0
4

8

T
o

ta
l

8
 P

ip
e

s
4

.4
1

1
4

1
1

6
3

6
8

5

T
o

ta
l

4
 P

ip
e

s
3

.4
1

9
.2

0
8

3
4

.9
8

3
7

1
4

4
6

0
2

1

1
0

1
0

0

1
0

0
0

Time [ms]

In
te

l
C

o
re

 i
5

 7
5

0
 @

 2
.6

6
G

H
z

-
4

 C
o

m
p

u
te

 U
n

it
s

F
ig
u
re

6.
14
:
M
ea
su
re
m
en
t
C
P
U
,
4
P
ip
es

&
E
u
le
r
A
d
ve
ct
io
n
+

8
P
ip
es

&
M
ac
C
or
m
ac
k
A
d
ve
ct
io
n

73

7 Conclusion

The initial purpose of this thesis was to implement an erosion algorithm with the new and
universal OpenCL computing platform. For this the existing literature was examined leading to
a series of papers which already explored the theme real-time erosion simulation but on di�erent
platforms and with a very specialized focus. With the knowledge of these algorithms a new
mixture of the di�erent strategies was proposed in chapter 3 �Erosion Model�.

To give an overview on the OpenCL platform which is new in comparison to already existing
approaches like nVidia's Cg Shading Language or CUDA, the very basics where explained in
chapter 4 �A Brief Introduction to OpenCL�. References to current hardware were made regularly,
to give a good insight on how the distinct components are implemented on actual hardware. At
the end of this chapter a short example program was shown to give an idea on how to start an
OpenCL application from scratch.

In the following chapter the implementation of the laid out model in a self-written test
framework and an overview of the host application was presented, followed by an explanation
of the memory layout and the execution path of the OpenCL parts. Later on the implemented
Kernels's were discussed at which more insight into the actual realization was provided.

Chapter 6 �Results� covered the di�erent stages of the erosion algorithm which were explored
in separation as well as combined. To prove the simulation results, some real world phenomena
were taken and compared to simulated scenes. Finally the measured performance of the algorithm
was presented on both CPU and GPU solutions, which was achieved by forcing the OpenCL
runtime to run on a speci�c device type. Although the performance measurements from chapter
�Results� were su�cient for this kind of �exible cover-it-all-approach, there is still much room for
optimizations.

After all it can be concluded that hydraulic erosion alone can produce good resuts when the
parameters are tuned right for the speci�c situation. However the achieved results and also the
stability can be greatly improved in a long term manner if a thermal weathering process is added
to the simulation. The problem with the hydraulic erosion alone is, that it produces pretty sharp
edges on a regular grid and can carve very deep channels. The thermal weathering process is able
to smooth out these e�ects if con�gured correctly.
The comparison of the four pipe model to an eight pipe model is a point of discussion with

no clear answer. On the one hand it can be clearly stated that simulation results can be visu-
ally improved by using a �Moore� neighbourhood, on the other hand it can be less memory and
computational intensive if using only a �Von Neumann� neighbourhood if optimized for this ap-
proach. The same applies to the advection step where the MacCormack scheme was compared
to a simple-semi lagrangian backward Euler step. The MacCormack scheme produces much more
detail and if such detail is desired a MacCormack scheme can greatly improve simulation results,
whilst maintaining only a moderate overhead. Nevertheless this decision is problem dependant,

74

CHAPTER 7. CONCLUSION

e.g. in case of a physics simulation for a game, it makes sense to abandon all overhead in favor
of general execution speed.
The general advice is to include the thermal weathering step at any rate and if desireable the

eight pipe solution and the MacCormack advection scheme.

At last this thesis suggests topics for further researches. For example the shallow water imple-
mentation has several disadvantages by nature and could be improved by using other approaches
like multiple layers of pipes as described in the work �E�cient Animation of Water Flow on Irregular
Terrains� by Maes et al. [33]. Also the hydraulic erosion stage could be improved by using multiple
layers of material like Stava et al. [24]. For the sediment advection it is highly recommended to
research possibilities on how to implement a mass conserving advection scheme in this algorithm
or at least �nd a good solution to calculate deposition and dissolving constants automatically
on a per cell basis. As mentioned before the application of this algorithm e.g. in games need
further optimizations which also o�ers a direction for future work. A part which was completely
out of focus of this work was the optimization of the visualization. There exist many proposals
for e�ciently rendering terrain geometry but the combination of these rendering techniques with
the erosion algorithm needs further research.

75

Bibliography

[1] R. S. Harmon and W. W. D. III., Landscape Erosion and Evolution Modeling. Kluwer
Academic/Plenum Publishers, New York, USA, 2001.

[2] G. Valette, S. Prévost, L. Lucas, and J. Léonard, �Soda project: a simulation of soil surface
degradation by rainfall,� Computers & Graphics, vol. 30, no. 4, pp. 494�506, 2006.

[3] A. D. Kelly, M. C. Malin, and G. M. Nielson, �Terrain simulation using a model of stream
erosion,� in SIGGRAPH'88: Proceedings of the 15th annual conference on computer graphics
and interactive techniques, 1988, pp. 263�268.

[4] P. Prusinkiewicz and M. Hammel, �A fractal model of moutains with rivers,� in Proceedings
of Graphics Interface '93, 1993, pp. 128�137.

[5] F. K. Musgrave, C. E. Klob, and R. S. Mace, �The synthesis and rendering of eroded fractal
terrains,� in SIGGRAPH'89: Proceedings of the 16th annual conference on computer graphics
and interactive techniques, 1989.

[6] P. Roudier, B. Peroche, and M. Perrin, �Landscapes synthesis achieved through erosion and
deposition process simulation,� Computer Graphics Forum, vol. 12, no. 3, pp. 375�383,
1993. [Online]. Available: http://dx.doi.org/10.1111/1467-8659.1230375

[7] K. Nagashima, �Computer generation of eroded valley and mountain terrains,� The
Visual Computer, vol. 13, pp. 456�464, 1998, 10.1007/s003710050117. [Online]. Available:
http://dx.doi.org/10.1007/s003710050117

[8] B. Benes and R. Forsbach, �Visual simulation of hydraulic erosion,� Journal of WSCG, vol. 10,
pp. 79�86, 2002.

[9] N. Chiba, K. Muaroka, and K. Fujita, �An erosion model based on velocity �elds for the visual
simulation of mountain scenery,� Journal of Visualization and Computer Animation, vol. 9,
no. 4, pp. 185�194, 1998.

[10] B. Sutherland and J. Keyser, �Particle-based enhancement of terrain data,� in Siggraph'06
Research Poster, 2006, p. 96.

[11] B. Benes, V. Tesinsky, J. Hornys, and S. K. Bhatia, �Hydraulic erosion,� Computer Animation
and Virtual Worlds, vol. 17, no. 2, pp. 99�108, 2006.

[12] J. Stam, �Stable �uids,� in Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, ser. SIGGRAPH '99. New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co., 1999, pp. 121�128. [Online]. Available:
http://dx.doi.org/10.1145/311535.311548

76

http://dx.doi.org/10.1111/1467-8659.1230375
http://dx.doi.org/10.1007/s003710050117
http://dx.doi.org/10.1145/311535.311548

Bibliography

[13] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and T. J. Purcell,
�A survey of general-purpose computation on graphics hardware,� in Computer Graphics
Forum, vol. 26, no. 1, 2007, pp. 80�113.

[14] M. Harris, �Fast �uid dynamics simulation on the gpu,� in GPU Gems. Addison-Wesley
Professional, 2004, ch. 38, pp. 637�666.

[15] E. Wu, Y. Liu, and X. Liu, �An improved study of real-time �uid simulation on gpu,� Journal
of Computer Animation and Virtual World, vol. 15, no. 3-4, pp. 139�146, 2004.

[16] Y. Liu, X. Liu, and E. Wu, �Real-time 3d �uid simulation on gpu with complex obstacles,�
in Proceedings of Paci�c Graphics'04, 2004, pp. 247�256.

[17] W. Li, X. Wei, and A. Kaufman, �Implementing lattice boltzmann computation on graphics
hardware,� The Visual Computer, vol. 19, no. 7-8, pp. 444�456, 2003.

[18] A. Monitzer, �Fluid simulation on the gpu with complex obstacles using the lattice boltzmann
method,� Master's thesis, UT Vienna, Institute of Computer Graphics and Algorithms, 2008.

[19] D. A. Randall, �The shallow water equations,� Department of Atmospheric Science Colorado
State University, Fort Collins, Colorado 80523, Tech. Rep., 2006.

[20] M. Kass and G. Miller, �Rapid, stable �uid dynamics for computer graphics,� in SIGGRAPH
'90: Proceedings of the 17th annual conference on Computer graphics and interactive tech-
niques, 1990, pp. 49�57.

[21] B. Benes, �Real-time erosion using shallow water simulation,� in VRIPHYS'07: 4th Workshop
in Virtual Reality Interactions and Physical Simulation, 2007.

[22] J. O'Brien and J. K. Hodgins, �Dynamic simulation of splashing �uids,� in Proceedings of
Computer Animation '95, 1995, pp. 198�205.

[23] X. Mei, P. Decaudin, and B.-G. Hu, �Fast hydraulic erosion simulation and visualization on
GPU,� in 15th Paci�c Conference on Computer Graphics and Applications, Paci�c Graphics
2007, November, 2007. Maui, Hawaii, Etats-Unis: IEEE, Nov. 2007, pp. 47�56.

[24] O. Stava, B. Benes, M. Brisbin, and J. Krivanek, �Interactive terrain modeling using
hydraulic erosion,� M. Gross and D. James, Eds. Dublin, Ireland: Eurographics Association,
2008, pp. 201�210. [Online]. Available: http://www2.tech.purdue.edu/cgt/Facsta�/bbenes/
private/papers/Stava08SCA.zip

[25] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac, �An unconditionally stable maccormack
method.� journal of scienti�c computing (in review). available online at,� J. Sci. Comput,
2007.

[26] J. Jákó, �Fast hydraulic and thermal erosion on gpu,� in Proceedings of CESCG 2011: The
15th Central European Seminar on Computer Graphics, 2011.

[27] P. Y. Julien and D. B. Simmons, �Sediment transport capacity of overland �ow,� in Transac-
tions of the ASAE, Vol. 28, No. 3. St. Joseph, Michigan: American Society of Agricultural
Engineers, 1985, pp. 755�762.

77

http://www2.tech.purdue.edu/cgt/Facstaff/bbenes/private/papers/Stava08SCA.zip
http://www2.tech.purdue.edu/cgt/Facstaff/bbenes/private/papers/Stava08SCA.zip

Bibliography

[28] J. Grotzinger, T. Jordan, F. Press, R. Siever, and V. Schweizer, Press/Siever- Allgemeine
Geologie, ser. SAV Geowissenschaften. Spektrum Akademischer Verlag, 2007.

[29] H. L. Penman, �Natural Evaporation from Open Water, Bare Soil and Grass,� Royal Society
of London Proceedings Series A, vol. 193, pp. 120�145, April 1948.

[30] K. Group, The OpenCL Speci�cation - Version 1.2, Khronos Group, 2011. [Online].
Available: http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[31] B. Gaster, D. Kaeli, L. Howes, P. Mistry, and D. Schaa, Heterogeneous Computing With
Opencl. Elsevier Science & Technology, 2011.

[32] AMD, AMD Accelerated Parallel Processing OpenCLTM Programming
Guide (v1.3f), Advanced Micro Devices Inc., 2011. [Online]. Avail-
able: http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_
Processing_OpenCL_Programming_Guide.pdf

[33] M. M. Maes, T. Fujimoto, and N. Chiba, �E�cient animation of water �ow on
irregular terrains,� in Proceedings of the 4th international conference on Computer
graphics and interactive techniques in Australasia and Southeast Asia, ser. GRAPHITE
'06. New York, NY, USA: ACM, 2006, pp. 107�115. [Online]. Available: http:
//doi.acm.org/10.1145/1174429.1174447

[34] B. Neidhold, M. Wacker, and O. Deussen, �Iterative physically based �uid and erosion simu-
lation,� in Eurographics Workshop on Natural Phenomena '05, 2005, pp. 25�32.

[35] nVidia, nVidia OpenCL Best Practices Guide, NVIDIA Corporation, 2011.

78

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/AMDAPPSDK/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://doi.acm.org/10.1145/1174429.1174447
http://doi.acm.org/10.1145/1174429.1174447

List of Figures

2.1 Erosion simulation on GPU with rainfall and a river source (source: [23], page 8) 5
2.2 Real-time simulation of erosion exposing a fossil skeleton (source: [24], page 2) . 5
2.3 Fast Hydraulic and Thermal Erosion (source: [26], page 6) 6

3.1 Basic data structure and neighbouring information (source: [23], page 3) 7
3.2 Pipe model notations in Mei et al. (source: [23], page 4) 10
3.3 Talus Angle in Nature, photograph by Michelle Lamberson 1 16
3.4 Talus angle measurement (source [26]) . 17
3.5 Comparison of di�erent evaporation constants Ke, 4t = 0.1, Start Value = 10.0 19

4.1 OpenCL Logo - Trademark of Apple Inc. 20
4.2 OpenCL Platform Architecture . 22
4.3 OpenCL Work Groups & Work Items (source: [31], page 19) 23
4.4 OpenCL Memory Model . 24
4.5 OpenCL Example Work Distribution . 27
4.6 OpenCL Work Group & Kernel Bound Synchronization (source [31], page 91) . . 28

5.1 SimpleMarker . 38
5.2 After program startup . 39
5.3 Edit Mode Functions . 40
5.4 Parameter Visualisation . 41
5.5 Kernel Execution Flow . 45

6.1 Thermal Weathering Test 1 . 58
6.2 Thermal Weathering Test 2 . 59
6.3 �PG� shaped mountain example . 60
6.4 4 vs. 8 Pipes - Euler vs. Mac Cormack Advection - �PG� 63
6.5 4 vs. 8 Pipes - Euler vs. Mac Cormack Advection - �PG� Detail 64
6.6 4 vs. 8 Pipes - Euler vs. Mac Cormack Advection Sediment - �PG� 65
6.7 4 vs. 8 Pipes - Euler vs. Mac Cormack Advection - Pyramid 66
6.8 4 vs. 8 Pipes - Euler vs. Mac Cormack Advection Sediment - Pyramid 67
6.9 Full Erosion Model Example . 68
6.10 Devils Tower in Wyoming, (photographed by Colin Faulkingham 2) 69
6.11 Grooves, (photographed by Avi Dolgin 3) . 70
6.12 Measurement 1, 8 Pipes & MacCormack Advection 71
6.13 Measurement 2, 4 Pipes & Euler Advection . 72
6.14 Measurement CPU, 4 Pipes & Euler Advection + 8 Pipes & MacCormack Advection 73

79

List of Tables

3.1 Typical values for Talus Angles (source [28]) . 18

5.1 Memory consumption for di�erent grid sizes . 44

6.1 Algorithm Test Parameters . 61
6.2 Comparison CPU vs. GPU . 62

80

List of Abbreviations

CPU Central Processing Unit
GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit
DSP Digital Signal Processor

OpenGL Open Graphics Language
GLUT GL Utility Toolkit
GLSL GL Shading Language
DevIL Developers Image Library

OpenCL Open Computing Language
OpenMP Open Multi-Processing

CUDA Compute Uni�ed Device Architecture
Cg C for graphics

LBM Lattice Boltzmann Method
SWE Shallow Water Equations

BFECC Back $ Forth Error Compensation and Correction
SIMD Single Input Multiple Data
VLIW Very Large Instruction Word
SSE Streaming SIMD Extensions
IL Intermediate Language

API Application Programming Interface
SLI Scalable Link Interface
FPS Frames per Second
PSD Photoshop Document
RNG Random Number Generator
LKG Linear Congruential Generator

81

	Introduction
	Related Work
	Overview
	Fast Hydraulic Erosion Simulation and Visualization on GPU
	Interactive Terrain Modeling Using Hydraulic Erosion
	Fast Hydraulic and Thermal Erosion on the GPU

	Erosion Model
	Pseudo Random Number Generator
	Terrain Surface Normal Generation
	Water Increment
	Water Simulation
	Outflow Calculation
	Velocity Field Calculation
	Extension to Moore-Neighbourhood

	Hydraulic Erosion and Deposition
	Sediment Advection

	Thermal Weathering
	Material Displacement Calculation
	Terrain Height Update

	Water Evaporation

	A Brief Introduction to OpenCL
	Motivation
	Overview
	OpenCL Memory Model
	OpenCL Execution Environment & Objects
	Overview
	Setup
	Memory
	Execution

	Execution Flow
	OpenCL C
	Limitations of OpenCL C

	Basic Example

	Implementation of a Test Framework
	Host Application
	Tool Classes
	Usage

	Erosion Simulation
	Water Evaporation / Increase
	Rand Buffer Update
	Terrain Normal Generation
	Water outflow calculation
	Water height update / Velocity Field calculation / Sediment Capacity computation
	Erosion - Deposition
	Sediment Advection
	Thermal Weathering Soil Outflow Calculation
	Thermal Weathering Height Update

	Visualization

	Results
	Thermal Weathering
	Hydraulic Erosion Neighbourhood and Advection
	Full Algorithm Results
	Comparison to Natural Phenomena

	Performance Measurements

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations

